Antosianin Ekstrak Ubi Jalar Ungu Kering untuk Donor Elektron Sel Surya Pewarna Tersensitisasi (SSPT)
Abstract
Abstrak
Ubi jalar ungu (Ipomoea batatas L., Poir) memiliki kandungan antosianin tinggi, bersifat alami sehingga menjadikan antosianin aman digunakan dan dapat diperbarui. Antosianin dapat digunakan sebagai dye dalam rangkaian sel surya pewarna tersensitisasi (SSPT). Antosianin diperoleh dari sel tanaman dengan maserasi dan pelarut etanol yang diasamkan dengan asam asetat. Tujuan penelitian untuk mengetahui tingkat keasaman pelarut dalam menghasilkan antosianin tertinggi, panjang gelombang serapan dan kemampuan dye sebagai donor elektron pada SSPT. Penelitian rancangan acak lengkap satu faktor dengan empat level keasaman (pH 4,00; 4,25; 4,50 dan 4,75), diulang 2 kali digunakan dalam penelitian ini. Pembuatan SSPT dengan cara perakitan elektroda kerja, elektroda lawan, elektrolit, dan dye antosianin. SSPT diuji di bawah sinar matahari selama 60 menit setiap hari untuk mengetahui kemampuan dalam menghasilkan tegangan dan arus listrik. Nilai absorbansi tertinggi sebesar 0,0485±0,20 dan kandungan antosianin terbaik sebesar 224,97±0,02 mg/100 g diperoleh pada perlakuan pH 4,00 dan panjang gelombang antosianin 520-700 nm. Dye antosianin sebagai donor elektron SSPT mampu menghasilkan tegangan listrik selama 15 hari dan arus listrik selama 10 hari. Tegangan listrik dan arus listrik tertinggi sebesar 0,25 volt dan 0,12 ampere.
Kata kunci: antosianin, maserasi, sel surya pewarna tersensitisasi (SSPT), ubi jalar ungu
Abstract
Purple sweet potato (Ipomoea batatas L. Poir) is a variety which has high anthocyanin. One of the benefits of anthocyanin extract obtained will be made as an electron donor dye in a series of dye-sensitized solar cells (DSSC). Anthocyanins can be extracted by a maceration method which utilizes acidified solvent of ethanol using acetic acid. The purpose of this research is to find out the acidity of the solvent extraction the highest anthocyanin, the wavelength of anthocyanin uptake and the ability of an anthocyanin dye as an electron donor. The research was designed by a completely randomized design one factor with four levels namely acidity (pH 4.00; 4.25; 4.50 and 4.75) and twice repeated. Then it is made to make DSSC by assembling working electrodes, opposing electrodes, electrolytes, and anthocyanin dye. DSSC is tested under sunlight for 60 minutes per days to determine the ability to produce voltage and electric current. The best anthocyanin content was obtained at 224.97±0.02 mg /100 g and absorbancy value 0.0485±0.20 in solvents with a pH of 4.00. The wavelength of anthocyanins ranged from 520-700 nm. Dye anthocyanin as an electron donor in DSSC can produce electricity for 15 days and electric current for ten days, the highest electricity voltage and electric current is 0.25 volts and 0.12 amperes respectively.
Keywords: anthocyanin, dye-sensitized solar cells, maceration, purple sweet potato
Keywords
Full Text:
PDFReferences
Agustin, D., & Ismiyati, I. (2015). Pengaruh konsentrasi pelarut pada proses ekstraksi antosianin dari bunga kembang sepatu. Jurnal Konversi, 4(2), 9. https://doi.org/10.24853/konversi.4.2.9-16
Ahliha, A. H., Nurosyid, F., Supriyanto, A., & Kusumaningsih, T. (2017). The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO 2 for dye-sensitized solar cell (DSSC). Journal of Physics: Conference Series, 909, 012013. https://doi.org/10.1088/1742-6596/909/1/012013
Bridgers, E. N., Chinn, M. S., & Truong, V.-D. (2010). Extraction of anthocyanins from industrial purple-fleshed sweetpotatoes and enzymatic hydrolysis of residues for fermentable sugars. Industrial Crops and Products, 32(3), 613–620. https://doi.org/10.1016/j.indcrop.2010.07.020
Calogero, G., Di Marco, G., Caramori, S., Cazzanti, S., Argazzi, R., & Bignozzi, C. A. (2009). Natural dye senstizers for photoelectrochemical cells. Energy & Environmental Science, 2(11), 1162. https://doi.org/10.1039/b913248c
Farida, R., & Nisa, F. C. (2015). Ekstraksi antosianin limbah kulit manggis metode microwave assisted extraction (lama ekstraksi dan rasio bahan pelarut). Jurnal Pangan Dan Agroindustri, 3(2), 363–373.
Francis, F. J. (1982). Analysis of Anthocyanins. New York: Academic Press.
Ginting, E., Utomo, J. S., Yulifianti, R., & Jusuf, M. (2011). Potensi ubi jalar ungu sebagai pangan fungsional. IPTEK Tanaman Pangan, 6(1), 116–138.
Gokilamani, N., Muthukumarasamy, N., Thambidurai, M., Ranjitha, A., & Velauthapillai, D. (2013). Utilization of natural anthocyanin pigments as photosensitizers for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 66(2), 212–219. https://doi.org/10.1007/s10971-013-2994-9
Grätzel, M. (2005). Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells. Comptes Rendus Chimie, 9(5–6), 578–583. https://doi.org/10.1016/j.crci.2005.06. 037
Hambali, M., Mayasari, F., & Noermansyah, F. (2014). Ekstraksi antosianin dari ubi jalar dengan variasi konsentrasi solven, dan lama waktu ekstraksi. Jurnal Teknik Kimia Universitas Sriwijaya, 20(2), 25–35.
Hikmah, I., & Prajitno, G. (2015). Pengaruh penggunaan gel-electrolyte pada prototipe dye sensitized solar cell (DSSC) berbasis TiO2 nanopartikel dengan ekstrak murbei (Morus) sebagai dye sensitized pada substrat kaca ITO. Jurnal Sains Dan Seni, 4(1), 5–10.
Kumalaningsih, S. (2007). Antioksidan Alami: Penangkal Radikal Bebas. Surabaya: Trubus Agrisarana.
Kurniawan, N., Sugianto, & Salomo. (2016). Aplikasi ekstraksi antosianin ubi jalar ungu dengan variasi pH pelarut sebagai sel surya pewarna tersensitisasi. Jurnal Sains & Matematika UNRI, 4(2), 1–6.
Li, B., Wang, L., Kang, B., Wang, P., & Qiu, Y. (2006). Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90(5), 549–573. https://doi.org/10.1016/j.solmat.2005.04.039
Maulida, R., & Guntarti, A. (2015). Pengaruh ukuran partikel beras hitam (Oryza sativa L.) terhadap rendemen ekstrak dan kandungan total antosianin. Pharmaciana, 5(1), 9–16. https://doi.org/10.12928/pharmaciana.v5i1.2281
Narayan, M. R. (2011). Review: Dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews, 16(1), 208–215. https://doi.org/10.1016/j.rser. 2011.07.148
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0
Prima, E. C., Yuliarto, B., Suyatman, & Dipojono, H. K. (2017). Donor-Modified Anthocyanin Dye-Sensitized Solar Cell with TiO2 Nanoparticles: Density Functional Theory Investigation. Materials Science Forum, 889, 178–183. https://doi.org/10.4028/www.scientific. net/MSF.889.178
Robinson, T. (1995). Kandungan Organik Tumbuhan Tinggi. Bandung: Institut Teknologi Bandung.
Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., & Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, 40(10), 1303–1320. https://doi.org/10.1002/er.3538
Siregar, Y. D. I., & Nurlela, N. (2012). Ekstraksi dan uji stabilitas zat warna alami dari bunga kembang sepatu (Hibiscus rosa-sinensis L) dan bunga rosela (Hibiscus sabdariffa L). Jurnal Kimia VALENSI, 2(3), 459–467. https://doi.org/10. 15408/jkv.v2i3.117
Subodro, R., Kristiawan, B., Ramelan, A. H., Wahyuningsih, S., Munawaroh, H., Hanif, Q. A., & Saputri, L. N. M. Z. (2017). Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin). In International Conference on Engineering, Science and Nanotechnology 2016 (ICESNANO 2016) (p. 030104). American Institute of Physics. https://doi.org/10.1063/1.4968357
Sun, C., Li, Y., Song, P., & Ma, F. (2016). An experimental and theoretical investigation of the electronic structures and photoelectrical properties of ethyl red and carminic acid for DSSC application. Materials, 9(10), 813. https://doi.org/10.3390/ma9100813
Suzery, M., Lestari, S., & Cahyono, B. (2010). Penentuan total antosianin dari kelopak bunga rosella (Hibiscus sabdariffa L.) dengan metode maserasi dan sokhletasi. MIPA, 18(1), 1–6.
Voigt, R. (1995). Buku Pelajaran Teknologi Farmasi. Yogyakarta: Gadjah Mada University Press.
Wijaya, M. (2001). Dasar-dasar Mesin Listrik. Jakarta: Djambatan.
Winarti, S., & Firdaus, A. (2010). Stabilitas warna merah ekstrak bunga rosella untuk pewarna makanan dan minuman. Jurnal Teknologi Pertanian, 11(2), 87–93.
https://doi.org/10.21776/ub.industria.2018.007.03.1
Refbacks
- There are currently no refbacks.