Model Jaringan Syaraf Tiruan untuk Prakiraan Harga Komponen Bahan Baku Pakan Unggas di PT XYZ
Abstract
Abstrak
PT XYZ adalah salah satu produsen pakan unggas di Kabupaten Banyuwangi, Jawa Timur. Permasalahan dalam pengembangan pakan unggas di PT XYZ adalah harga pakan unggas yang berfluktuasi. Komponen terbesar bahan baku pembuatan pakan unggas adalah jagung dan bungkil kacang kedelai (BKK). Permasalahan fluktuasi harga pakan unggas dapat diatasi dengan prakiraan harga jagung dan BKK. Prakiraan yang tepat dapat membantu PT XYZ untuk optimalisasi alokasi sumber daya perusahaan. Optimalisasi sumber daya bertujuan untuk meningkatkan keuntungan yang diperoleh perusahaan. Tujuan dari penelitian ini adalah pengembangan model jaringan syaraf tiruan (JST) backpropagation untuk prakiraan harga jagung dan BKK. Model JST dikembangkan dengan perlakuan jumlah lapisan tersembunyi (node hidden layer), fungsi aktivasi, dan laju pembelajaran (learning rate). Data penelitian yang digunakan adalah harga jagung dan BKK pada periode Januari 2016-Oktober 2018. Hasil penelitian menunjukkan bahwa model JST terbaik untuk prakiraan harga jagung adalah 12 node input, 5 node hidden layer, dan 1 node output dengan kombinasi fungsi aktivasi sigmoid biner (logsig)-sigmoid biner (logsig) dan learning rate 0,005. Model JST terbaik untuk prakiraan harga BKK adalah 12 node input, 10 node hidden layer, dan 1 node output dengan kombinasi fungsi aktivasi sigmoid bipolar (tansig)-pure linier (purelin) dan tingkat learning rate 0,006.
Kata kunci: harga jagung dan bungkil kacang kedelai, Jaringan Syaraf Tiruan, pakan unggas
Abstract
PT XYZ is one of the poultry feed producers in Banyuwangi Regency. The problem in developing poultry feed at PT XYZ was related to the fluctuative price of poultry feed itself. The biggest component of raw material for producing poultry feed that affect prices were maize and soybean meal. The problem of poultry feed price fluctuations can be overcome by forecasting the price of maize and soybean meal. The accurate forecast can be used as a reference for PT XYZ in optimizing the allocation of resources so as to increase the profits of the company. The aim of this study was developing a backpropagation neural network (ANN) model. The ANN model was developed by number of hidden layers, activation function, and learning rate. The price of maize and soybean meal in the period January 2016-October 2018 was used as data in this study. The best model for forecasting maize price was 12 input nodes, 5 hidden layer nodes, and 1 output node with a combination of the sigmoid binary (logsig)-sigmoid binary (logsig) activation function and 0.005 learning rate. The best model for forecasting soybean meal was 12 input nodes, 10 hidden layer nodes, and 1 output node with a combination of sigmoid bipolar (tansig)-pure linear activation function (purelin) and 0.006 learning rate.
Keywords: Artificial Neural Network, maize and soybean meal prize, poultry feed
Keywords
Full Text:
PDFReferences
Alanis, A. Y. (2018). Electricity prices forecasting using artificial neural networks. IEEE Latin America Transactions, 16(1), 105–111. https://doi.org/10.1109/TLA.2018.8291461
Andri, Y. (2018). Siap-Siap, Harga Jagung Bakal Terus Melejit. Retrieved from https://ekonomi.bisnis. com/read/20180905/12/835353/siap-siap-harga-jagung-bakal-terus-melejit
Antwi, P., Li, J., Boadi, P. O., Meng, J., Shi, E., Deng, K., & Bondinuba, F. K. (2017). Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network. Bioresource Technology, 228, 106–115. https://doi.org/10.1016/j.biortech.2016.12.045
Cheng, J., Wang, X., Si, T., Zhou, F., Zhou, J., & Cen, K. (2016). Ignition temperature and activation energy of power coal blends predicted with back-propagation neural network models. Fuel, 173(January), 230–238. https://doi.org/10.1016/j.fuel.2016.01.043
Devi, C. J., Reddy, B. S. P., Kumar, K. V., Reddy, B. M., & Nayak, N. R. (2012). ANN approach for weather prediction using back propagation. International Journal of Engineering Trends and Technology, 3(1), 19–23.
Diebold, F. X. (2007). Elements of Forecasting in Business, Finance, Economics and Government. Boston, MA: Cengage Learning.
Islam, M. S., Haque, M. M., & Hossain, M. S. (2015). Effect of corn moisture on the quality of poultry feedv. Journal of Poultry Science and Technology, 3(2), 24–31.
Jaber, A. A., Saleh, A., & Mohammed Ali, H. F. (2019). Prediction of hourly cooling energy consumption of educational buildings using artificial neural network. International Journal on Advanced Science, Engineering and Information Technology, 9(1), 159–166. https://doi.org/10.18517/ijaseit.9.1.7351
Jammazi, R., & Aloui, C. (2012). Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, 34(3), 828–841. https://doi.org/10.1016/j.eneco.2011.07.018
Jong, J. S. (2005). Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB. Yogyakarta: Andi.
Julpan, Nababan, E. B., & Zarlis, M. (2015). Analisis fungsi aktivasi sigmoid biner dan sigmoid bipolar dalam algoritma backpropagation pada prediksi kemampuan siswa. Jurnal Teknovasi : Jurnal Teknik Dan Inovasi Mesin Otomotif, Komputer, Industri Dan Elektronika, 2(1), 103–116.
Kusumadewi, S., & Hartati, S. (2006). Neuro Fuzzy: Integrasi Sistem Fuzzy dan Jaringan Syaraf. Yogyakarta: Graha Ilmu.
Liu, S., Xu, L., & Li, D. (2016). Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks. Computers & Electrical Engineering, 49, 1–8. https://doi.org/10.1016/j.compeleceng.2015.10.003
Mufidah, I., Suwasono, S., Wibowo, Y., & Soedibyo, D. W. (2017). Peramalan jumlah permintaan udang beku PND menggunakan metode jaringan syaraf tiruan (jst) backpropagation. Jurnal Agroteknologi, 11(1), 17–22. https://doi.org/10.19184/j-agt.v11i1.5438
Razak, A., & Riksakomara, E. (2017). Peramalan jumlah produksi ikan dengan menggunakan backpropagation neural network (studi kasus: UPTD pelabuhan perikanan Banjarmasin). Jurnal Teknik ITS, 6(1), A142–A148. https://doi.org/10.12962/j23373539.v6i1.22129
Sibi, P., Jones, S. A., & Siddarth, P. (2013). Analysis of different activation functions using back propagation neural networks. Journal of Theoretical and Applied Information Technology, 47(3), 1264–1268.
Thota, L. S., & Changalasetty, S. B. (2013). Optimum learning rate for classification problem with MLP in data mining. International Journal of Advances in Engineering & Technology, 6(1), 35–44.
Yuniartha, L. (2018). Bungkil Kedelai Naik Berpotensi Naikkan Harga Pakan Ternak. Retrieved from https://industri.kontan.co.id/news/bungkil-kedelai-naik-berpotensi-naikkan-harga-pakan-ternak
Zhao, Y., Nan, J., Cui, F., & Guo, L. (2007). Water quality forecast through application of BP neural network at Yuqiao reservoir. Journal of Zhejiang University-SCIENCE A, 8(9), 1482–1487. https://doi.org/10.1631/jzus.2007.A1482
Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16–18), 2913–2923. https://doi.org/10.1016/j.neucom.2007.01.009
https://doi.org/10.21776/ub.industria.2020.009.02.9
Refbacks
- There are currently no refbacks.