The Potency of Indigenous Lactobacillus farciminis LIPI12-2-LAB033 Isolated from Non-Dairy Product of Indonesian Fermented Food as a New Source of β-galactosidase Enzyme

Fitri Setiyoningrum, Gunawan Priadi, Fifi Afiati, Rohmatussolihat Rohmatussolihat, Aulia Hesti Anjani

Abstract


Abstract

The β-galactosidase is an enzyme that plays an essential role in the lactose hydrolysis into glucose and galactose. This study examines the potential of β-galactosidase from several lactic acid bacteria (LAB) isolated from non-dairy products Indonesian fermented foods and purifies them to increase their specific activity. The enzyme was extracted using ultrasonication, purified with ammonium sulfate, and dialyzed with a cellulose membrane (11 kDa). The result of isolates tests showed that Lactobacillus farciminis LIPI12-2-LAB033 had the highest specific activity of 13.9 U/mg protein. Precipitation using 40% ammonium sulfate increased the specific activity up to 19.6 U/mg protein. This enzyme works optimally at a temperature of 40 °C and pH of 7. The specific activity of this enzyme increases to 75.6 U/mg protein after dialysis. The dialysis process purifies the enzyme 5.44 times with a yield of 26.7%. These findings indicate that Lactobacillus farciminis LIPI12-2-LAB033 can be considered as a source of β-galactosidase enzyme production.

Keywords: enzyme, β-galactosidase, Lactobacillus farciminis, indigenous, partial purification

 

Abstrak

β-galaktosidase merupakan enzim yang berperan penting dalam hidrolisis laktosa menjadi glukosa dan galaktosa. Penelitian ini mengkaji potensi β-galaktosidase dari beberapa bakteri asam laktat yang diisolasi dari makanan fermentasi Indonesia yang bukan produk turunan susu dan memurnikannya untuk meningkatkan aktivitas spesifiknya. Enzim diekstraksi dari sel menggunakan ultrasonikasi kemudian dimurnikan dengan amonium sulfat dan didialisis dengan membran selulosa (11 kDa). Hasil uji isolat menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 memiliki aktivitas spesifik tertinggi sebesar 13.9 U/mg protein. Pengendapan menggunakan ammonium sulfat 40% meningkatkan aktivitas spesifiknya hingga 19.6 U/mg protein. Enzim ini bekerja optimal pada suhu 40 °C dan pH 7. Aktivitas spesifik enzim ini meningkat hingga 75.6 U/mg protein setelah proses dialisis. Proses dialisis memurnikan enzim menjadi 5.44 kali lipat dengan rendemen 26.7%. Temuan ini menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 dapat dipertimbangkan sebagai sumber produksi enzim β-galaktosidase.

Kata kunci: enzim, β-galaktosidase, Lactobacillus farciminis, indigenous, purifikasi sebagian

 


Keywords


enzyme; β-galactosidase; Lactobacillus farciminis; indigenous; partial purification; enzim; β-galaktosidase; purifikasi sebagian

Full Text:

PDF

References


Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., … Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885–1895. https://doi.org/10.1016/j.psyneuen.2012.03.024

Bekler, F. M., Yalaz, S., Acer, O., & Guven, K. (2017). Purification of thermostable β-galactosidase from Anoxybacillus sp. KP1 and estimation of combined effect of some chemicals on enzyme activity using semiparametric errors in variables model. Fresenius Environmental Bulletin, 26(3), 2251–2259.

Bhalla, T., Devi, A., Angmo, K., Thakur, N., & Kumari, A. (2015). β-galactosidase from Lactobacillus brevis PLA28: Purification, characterization and synthesis of galacto-oligosaccharides. Journal of Food & Industrial Microbiology, 1(1), 1000104.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999

Cardoso, B. B., Silvério, S. C., Abrunhosa, L., Teixeira, J. A., & Rodrigues, L. R. (2017). β-galactosidase from Aspergillus lacticoffeatus : A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 257, 67–74. https://doi.org/10.1016/j.ijfoodmicro.2017.06.013

Carevic, M., Vukasinovic-Sekulic, M., Grbavcic, S., Stojanovic, M., Mihailovic, M., Dimitrijevic, A., & Bezbradica, D. (2015). Optimization of β-galactosidase production from lactic acid bacteria. Hemijska Industrija, 69(3), 305–312. https://doi.org/10.2298/HEMIND140303044C

Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006

Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., & Zhang, H. (2008). Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91(5), 1751–1758. https://doi.org/10.3168/jds.2007-617

Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of Proteins Using Ammonium Sulfate Precipitation (pp. 85–94). https://doi.org/10.1016/B978-0-12-420119-4.00007-0

Erich, S., Kuschel, B., Schwarz, T., Ewert, J., Böhmer, N., Niehaus, F., … Fischer, L. (2015). Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. Journal of Biotechnology, 210, 27–37. https://doi.org/10.1016/j.jbiotec.2015.06.411

Fatchiyah, Laras, E., Widyarti, S., & Rahayu, S. (2011). Biologi Molekular : Prinsip Dasar Analisis. Jakarta: Erlangga.

Gheytanchi, E., Heshmati, F., Shargh, B. K., Nowroozi, J., & Movahedzadeh, F. (2010). Study on β-galactosidase enzyme produced by isolated lactobacilli from milk and cheese. African Journal of Microbiology Research, 4(6), 454–458.

Giaretta, S., Treu, L., Vendramin, V., da Silva Duarte, V., Tarrah, A., Campanaro, S., … Giacomini, A. (2018). Comparative transcriptomic analysis of Streptococcus thermophilus TH1436 and TH1477 showing different capability in the use of galactose. Frontiers in Microbiology, 9, 1–15. https://doi.org/10.3389/fmicb.2018.01765

Gomaa, E. Z. (2018). β-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: Optimization, characterization and formation of galactooligosaccharides. Indian Journal of Biotechnology, 17(3), 407–415.

Ji, D., Oey, I., & Agyei, D. (2019). Purification, characterization and thermal inactivation kinetics of β-galactosidase from Lactobacillus leichmannii 313. LWT, 116, 108545. https://doi.org/10.1016/j.lwt.2019.108545

Mariyani, N., Lioe, H. N., Faridah, D. N., Khusniati, T., & Sulistiani. (2015). Hydrolysis of UHT milk lactose by partially purified crude enzyme of β-galactosidase obtained from Lactobacillus plantarum B123 indigenous strain. International Food Research Journal, 22(6), 2274–2279.

Mozumder, N. H. M. R., Akhtaruzzaman, M., Bakr, M. A., & Zohra, F. T. (2011). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria isolated from yogurt. Journal of Scientific Research, 4(1), 239–249. https://doi.org/10.3329/jsr.v4i1.8478

Nurhayati, T., Salamah, E., & Dynnar, N. (2012). Purifikasi parsial dan karakterisasi enzim katepsin dari ikan bandeng (Chanos chanos Forskall). Jurnal Pengolahan Hasil Perikanan Indonesia, 15(2), 164–172.

Pal, A., Lobo, M., & Khanum, F. (2013). Extraction, purification and thermodynamic characterization of almond (Amygdalus communis) β-galactosidase for the preparation of delactosed milk. Food Technology and Biotechnology, 51(1), 53–61.

Park, C. M., Kim, G. M., & Cha, G. S. (2021). Biotransformation of flavonoids by newly isolated and characterized Lactobacillus pentosus NGI01 strain from kimchi. Microorganisms, 9(5), 1–8. https://doi.org/10.3390/microorganisms9051075

Pereira-Rodríguez, Á., Fernández-Leiro, R., González-Siso, M. I., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2012). Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 177(2), 392–401. https://doi.org/10.1016/j.jsb.2011.11.031

Pitt, T. L., & Barer, M. R. (2012). Classification, identification and typing of micro-organisms. In Medical Microbiology (pp. 24–38). Elsevier. https://doi.org/10.1016/B978-0-7020-4089-4.00018-4

Prasad, L. N., Ghosh, B., Sherkat, F., & Shah, N. (2013). Extraction and characterisation of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. International Food Research Journal, 20(1), 487–494.

Prihantini, N. N., Khusniati, T., Bintang, M., Choliq, A., & Sulistiani. (2013). Purifikasi parsial dan karakterisasi β-galactosidase dari Lactobacillus plantarum strain D-210. Jurnal Kedokteran Yarsi, 21(1), 14–26.

Rahmadi, A. (2019). Bakteri asam laktat dan mandai cempedak. (Bayu, Ed.) (1 st). Samarinda: Mulawarman University Press. https://doi.org/10.13140/RG.2.2.18884.27521/1

Ramos, O. S., & Malcata, F. X. (2011). Food-Grade Enzymes. In Comprehensive Biotechnology (pp. 555–569). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00213-0

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., … Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

Rosolen, M. D., Gennari, A., Volpato, G., & Souza, C. F. V. de. (2015). Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases. Enzyme Research, 2015. https://doi.org/10.1155/2015/806240

Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 1–7. https://doi.org/10.1007/s13205-017-0645-5

Sudo, N. (2016). The Hypothalamic-Pituitary-Adrenal Axis and Gut Microbiota. In The Gut-Brain Axis (pp. 293–304). Elsevier. https://doi.org/10.1016/B978-0-12-802304-4.00013-X

Szilagyi, A., & Ishayek, N. (2018). Lactose intolerance, dairy avoidance, and treatment options. Nutrients, 10(12). https://doi.org/10.3390/nu10121994

Tao, Q., Li, A., Liu, X., Ma, R., An, Y., & Shi, L. (2011). Protecting enzymes against heat inactivation by temperature-sensitive polymer in confined space. Physical Chemistry Chemical Physics, 13(36), 16265–16271. https://doi.org/10.1039/c1cp21438a

Vidya, B., Palaniswamy, M., Angayarkanni, J., Ayub Nawaz, K., Thandeeswaran, M., Krishna Chaithanya, K., … Gopalakrishnan, V. K. (2020). Purification and characterization of β-galactosidase from newly isolated Aspergillus terreus (KUBCF1306) and evaluating its efficacy on breast cancer cell line (MCF-7). Bioorganic Chemistry, 94, 103442. https://doi.org/10.1016/j.bioorg.2019.103442

Wardani, A. K., & Nindita, L. O. (2012). Purifikasi dan karakterisasi protease dari bakteri hasil isolasi dari whey tahu. Jurnal Teknologi Pertanian, 13(3), 149–156.

Wingfield, P. T. (2016). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science, 84(1), A.3F.1–A.3F.9. https://doi.org/10.1002/0471140864.psa03fs84

Yang, Y., Li, N., Jiang, Y., Liu, Z., Liu, X., Zhao, J., … Chen, W. (2019). Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains. Journal of Dairy Science, 102(7), 6027–6031. https://doi.org/10.3168/jds.2018-15973

Yulinery, T., & Nurhidayat, N. (2012). Analisis viabilitas probiotik Lactobacillus terenkapsulasi dalam penyalut dekstrin dan jus markisa (Passiflora edulis). Jurnal Teknologi Lingkungan, 13(1), 109–121. https://doi.org/10.29122/jtl.v13i1.1411




https://doi.org/10.21776/ub.industria.2021.010.02.1

Refbacks

  • There are currently no refbacks.