Optimization of Vanillin Extraction from Biodegradation of Oil Palm Empty Fruit Bunches by Serpula lacrymans

Nurul Azizah, Sri Suhartini, Irnia Nurika

Abstract


Abstract

This research aims to determine the combination of the ethyl acetate solvent volume and the extraction time that resulted in the optimum response of vanillin content and vanillin yield from the degradation of lignocellulose components from oil palm empty fruit bunches (OPEFB). First, OPEFB degraded using Serpula lacrymans to break down lignocellulosic components. The research design used a centralized composite design with two factors, the volume of ethyl acetate solvent (ml) and the extraction time (minutes). The responses of the experiment are vanillin content and vanillin yields. The optimization analysis results showed that the volume of ethyl acetate solvent and extraction time have a quadratic effect on the vanillin content and vanillin yields. The optimal solution was obtained by treatment with ethyl acetate volume 101.1 ml and extraction time 123.5 minutes. The optimal solution prediction results obtained vanillin content 0.014% and vanillin yield 7.302 μg/g with desirability of 92.8%. Validation based on the optimal solution’s prediction brought response vanillin content 0.013% and vanillin yield 6.950 μg/g. The vanillin content and yield validation results differed respectively by 4.081% and 4.826% lower when compared to predictions on the optimal solution.

Keywords: ethyl acetate, vanillin content, vanillin yield

 

Abstrak

Penelitian ini bertujuan untuk mengetahui kombinasi dari volume pelarut etil asetat dan lama waktu ektraksi yang menghasilkan respon kadar vanillin dan yield vanillin optimum dari hasil degradasi komponen lignoselulosa tandan kosong kelapa sawit. Tandan kosong kelapa sawit terlebih dahulu didegradasi menggunakan jamur pelapuk Serpula lacrymans untuk memecah komponen lignoselulosa. Rancangan penelitian menggunakan rancangan komposit terpusat dengan dua faktor, yaitu volume pelarut etil asetat (ml) dan lama waktu ekstraksi (menit). Respon dari percobaan tersebut adalah kadar vanillin dan yield vanillin. Hasil penelitian untuk analisis optimasi menunjukkan bahwa faktor volume pelarut etil asetat dan lama waktu ekstraksi berpengaruh secara kuadratik terhadap respon kadar vanillin dan yield vanillin. Hasil solusi optimal diperoleh pada perlakuan dengan volume pelarut etil asetat sebesar 101,1 ml dan lama ekstraksi selama 123,5 menit. Hasil prediksi solusi optimal diperoleh kadar vanillin 0,014% dan yield vanillin 7,302 μg/g dengan ketepatan 92,8%. Validasi yang dilakukan berdasarkan pada prediksi solusi optimal diperoleh respon kadar vanillin 0,013% dan yield vanillin 6,950 μg/g. Hasil validasi kadar dan yield vanillin tersebut memiliki perbedaan masing-masing 4,081% dan 4,826% lebih rendah jika dibandingkan dengan prediksi pada solusi optimal.

Kata kunci: etil asetat, kadar vanillin, yield vanillin

 


Keywords


ethyl acetate; vanillin content; vanillin yield; etil asetat; kadar vanillin; yield vanillin

Full Text:

PDF

References


Agüı́, L., López-Guzmán, J. ., González-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. . (1999). Analytical performance of cylindrical carbon fiber microelectrodes in low-permitivity organic solvents: determination of vanillin in ethyl acetate. Analytica Chimica Acta, 385(1–3), 241–248. https://doi.org/10.1016/S0003-2670(98)00643-6

Aires, A. (2017). Phenolics in Foods: Extraction, Analysis and Measurements. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications. InTech. https://doi.org/10.5772/66889

Aydar, A. Y. (2018). Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. In V. Silva (Ed.), Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes (pp. 157–169). InTech. https://doi.org/10.5772/intechopen.73690

Bhanja Dey, T., & Kuhad, R. C. (2014). Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnology Reports, 4(1), 120–127. https://doi.org/10.1016/j.btre.2014.09.006

Czemplik, M., Korzun-Chłopicka, U., Szatkowski, M., Działo, M., Szopa, J., & Kulma, A. (2017). Optimization of phenolic compounds extraction from flax shives and their effect on human fibroblasts. Evidence-Based Complementary and Alternative Medicine, 2017, 1–15. https://doi.org/10.1155/2017/3526392

Dağdelen, A., & Dağdelen, A. F. (2016). Extraction of vanillin from sugared vanillin used in bakery products : an optimization of conventional soxhlet extraction and development of ultrasound assisted extraction. Journal of Agricultural Faculty of Uludag University, 30, 436–439.

Di Gioia, D., Luziatelli, F., Negroni, A., Ficca, A. G., Fava, F., & Ruzzi, M. (2011). Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Journal of Biotechnology, 156(4), 309–316. https://doi.org/10.1016/j.jbiotec.2011.08.014

Dong, Z., Gu, F., Xu, F., & Wang, Q. (2014). Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chemistry, 149, 54–61. https://doi.org/10.1016/j.foodchem.2013.10.052

Gallage, N. J., Hansen, E. H., Kannangara, R., Olsen, C. E., Motawia, M. S., Jørgensen, K., Holme, I., Hebelstrup, K., Grisoni, M., & Møller, B. L. (2014). Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nature Communications, 5(1), 4037. https://doi.org/10.1038/ncomms5037

Ghasemzadeh, A., & Jaafar, H. Z. E. (2014). Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/523120

Gomes, E. D., & Rodrigues, A. E. (2019). Lignin biorefinery: Separation of vanillin, vanillic acid and acetovanillone by adsorption. Separation and Purification Technology, 216(October 2018), 92–101. https://doi.org/10.1016/j.seppur.2019.01.071

Handayani, S., Arianingrum, R., & Haryadi, W. (2011). Vanillin structure modification of isolated vanilla fruit (Vanilla planifolia Andrews) to form vanillinacetone. Proceedings of 14th Asian Chemical Congress, 252–257.

Isroi, Ishola, M., Millati, R., Syamsiah, S., Cahyanto, M., Niklasson, C., & Taherzadeh, M. (2012). Structural changes of oil palm empty fruit bunch (opefb) after fungal and phosphoric acid pretreatment. Molecules, 17(12), 14995–15012. https://doi.org/10.3390/molecules171214995

Jadhav, D., B.N., R., Gogate, P. R., & Rathod, V. K. (2009). Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. Journal of Food Engineering, 93(4), 421–426. https://doi.org/10.1016/j.jfoodeng.2009.02.007

Jayakrishna, K., Rajesh, M., Soundhar, A., Surendhar, K., & Sultan, M. T. H. (2018). Advanced Manufacturing and Materials Science. In K. Antony & J. P. Davim (Eds.), Advanced Manufacturing and Materials Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-76276-0

Karamba, K. I., Ahmad, S. A., Zulkharnain, A., Syed, M. A., Khalil, K. A., Shamaan, N. A., Dahalan, F. A., & Shukor, M. Y. (2016). Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei, 27(3), 533–545. https://doi.org/10.1007/s12210-016-0516-8

Katsuragi, H., Shimoda, K., Kubota, N., Nakajima, N., Hamada, H., & Hamada, H. (2010). Biotransformation of cinnamic acid, p -coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana. Bioscience, Biotechnology, and Biochemistry, 74(9), 1920–1924. https://doi.org/10.1271/bbb.100335

Kementerian Pertanian. (2019). Produksi Kelapa Sawit Menurut Provinsi di Indonesia, 2015 - 2019.

Korripally, P., Timokhin, V. I., Houtman, C. J., Mozuch, M. D., & Hammel, K. E. (2013). Evidence from Serpula lacrymans that 2,5 dimethoxyhydroquinone is a lignocellulolytic agent of divergent brown rot basidiomycetes. Applied and Environmental Microbiology, 79(7), 2377–2383. https://doi.org/10.1128/AEM.03880-12

Kundu, A. (2017). Vanillin biosynthetic pathways in plants. Planta, 245(6), 1069–1078. https://doi.org/10.1007/s00425-017-2684-x

Lun, O. K., Wai, T. B., & Ling, L. S. (2014). Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. International Food Research Journal, 21(3), 953–958.

Mahendra, V. P., Haware, D. J., & Kumar, R. (2019). cAMP-PKA dependent ERK1/2 activation is necessary for vanillic acid potentiated glucose-stimulated insulin secretion in pancreatic β-cells. Journal of Functional Foods, 56, 110–118. https://doi.org/10.1016/j.jff.2019.02.047

Medina, J. D. L. C., Jiménes, G. C. R., García, H. S., Zarrabal, T. L. R., Alvarado, M. Á. G., & Olvera, V. J. R. (2009). Vanilla: Post-harvest Operations. FAO.

Medini, F., Fellah, H., Ksouri, R., & Abdelly, C. (2014). Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science, 8(3), 216–224. https://doi.org/10.1016/j.jtusci.2014.01.003

Omar, R., Idris, A., Yunus, R., Khalid, K., & Aida Isma, M. I. (2011). Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536–1544. https://doi.org/10.1016/j.fuel.2011.01.023

Respati, E. (2016). Outlook Kelapa Sawit Komoditas Pertanian Subsektor Perkebunan. In L. Nuryati & A. Yasin (Eds.), Pusat Data dan Sistem Informasi Pertanian Sekretariat Jendral – Kementerian Pertanian. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal - Kementerian Pertanian.

Sanz, A., Susmozas, A., Peters, J., & Dufour, J. (2017). Biorefinery Modeling and Optimization. In M. Rabaçal, A. F. Ferreira, C. A. M. Silva, & M. Costa (Eds.), Biorefineries: Targeting Energy, High Value Products and Waste Valorisation (Lecture No, pp. 123–160). Springer. https://doi.org/10.1007/978-3-319-48288-0_6

Sugiono. (2015). Isolasi dan karaterisasi fukoidan dari alga coklat Sargassum sp. Jurnal Agrosains : Karya Kreatif Dan Inovatif, 2(1), 96–107.

Suhartati, S., Puspito, R., Rizali, F., & Anggraini, D. (2016). Analisis sifat fisika dan kimia lignin tandan kosong kelapa sawit asal Desa Sape, Kabupaten Sanggau, Kalimantan Barat. Jurnal Kimia Valensi, 2(1), 24–29. https://doi.org/10.15408/jkv.v2i1.3102

Suksong, W., Mamimin, C., Prasertsan, P., Kongjan, P., & O-Thong, S. (2019). Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. Industrial Crops and Products, 133(March), 193–202. https://doi.org/10.1016/j.indcrop.2019.03.005

Tang, P.-L., Hassan, O., Maskat, M. Y., & Badri, K. (2015). Production of monomeric aromatic compounds from oil palm empty fruit bunch fiber lignin by chemical and enzymatic methods. BioMed Research International, 2015, 1–14. https://doi.org/10.1155/2015/891539

Wang, Q. (2011). Response Surface Methodology Analysis of Biodegradation of Acrylonitrile in Bioreactor. In H. Tan & M. Zhou (Eds.), Advances in Information Technology and Education. Springer.

Wang, Y., Sun, S., Li, F., Cao, X., & Sun, R. (2018). Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield. Industrial Crops and Products, 116(February), 116–121. https://doi.org/10.1016/j.indcrop.2018.02.043

Wani, T. A., Ahmad, A., Zargar, S., Khalil, N. Y., & Darwish, I. A. (2012). Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablets. Chemistry Central Journal, 6(1), 1–9. https://doi.org/10.1186/1752-153X-6-134

Yeni, G., Sa’id, E. G., Syamsu, K., & Mardliyati, E. (2014). Penentuan kondisi terbaik ekstraksi antioksidan dari gambir menggunakan metode permukaan respon. JLI (Jurnal Litbang Industri), 4(1), 39–48. https://doi.org/10.24960/jli.v4i1.637.39-48




https://doi.org/10.21776/ub.industria.2021.010.01.4

Refbacks

  • There are currently no refbacks.