Solar Tunnel Drying System: A Literature Review
Abstract
Abstract
Production, productivity, and area under production from fruits and spices are gradually increasing. Improper processes of freshly harvested spice and fruit products will make them undergo qualitative deterioration with each passing hour. This deterioration is more pronounced in high humid areas. Drying process in one or the other form is essential. Freshly harvested spices and fruit products in average contain more than 80% moisture. The commodities need to be dried to have a moisture content below 10% in the shortest possible time for safe storage. Drying process in most cases are accomplished by the open sun. Meanwhile, the environmental condition in solar tunnel drying is enclosure type and the product is protected from rains, dust, insects, and rodents. Solar tunnel drying, a widely used bulk dryer, facilitates faster drying than open drying by virtue of the greenhouse effect. Commercial cultivators by and large choose faster drying methods using wood and fossil fuel-fired heating sources. This study attempts to review recent advances of various designs and working of the greenhouse drying system in totality, like auxiliary drying during off-sun hours, bulk drying feasibility, ease in loading and unloading along with an analysis of key features and economics involved.
Keywords: auxiliary drying, greenhouse drying system, processing
Abstrak
Produksi, produktivitas dan luas areal produksi buah-buahan dan rempah-rempah meningkat secara bertahap. Produk rempah dan buah yang baru dipanen akan mengalami penurunan kualitas seiring waktu berjalan jika tidak diproses dengan benar. Kerusakan ini lebih terlihat di daerah dengan kelembaban tinggi. Pengeringan dalam satu atau bentuk lain penting dalam pemrosesan. Rempah-rempah dan produk buah yang baru dipanen rata-rata mengandung lebih dari 80% kelembaban dan perlu dikeringkan hingga kelembabannya di bawah 10% dalam waktu sesingkat mungkin untuk penyimpanan yang aman. Pengeringan ini dalam kebanyakan kasus dilakukan dengan sinar matahari terbuka, sedangkan kondisi lingkungan pengeringan terowongan surya adalah tipe tertutup dan produk terlindungi dari hujan, debu, serangga dan hewan pengerat. Pengeringan terowongan surya merupakan pengering kapasitas besar yang banyak digunaka. Pengeringan dengan alat ini lebih cepat daripada pengeringan terbuka berdasarkan efek rumah kaca. Pembudidaya komersial pada umumnya memilih metode pengeringan yang lebih cepat yang menggunakan kayu dan sumber pemanas berbahan bakar fosil. Studi ini bertujuan untuk meninjau kemajuan terkini dari berbagai desain dan cara kerja sistem pengeringan rumah kaca secara keseluruhan, seperti, pengeringan tambahan di malam hari, kelayakan pengeringan kapasitas besar, kemudahan dalam bongkar muat, serta analisis fitur utama dan ekonomi.
Kata kunci: pengeringan bantu, pengolahan, sistem pengeringan rumah kaca
Keywords
Full Text:
PDFReferences
Abdullah, K., & Mursalim. (1997). Drying of vanilla pods using a greenhouse effect solar dryer. Drying Technology, 15(2), 685–698. https://doi.org/10.1080/07373939708917254
Ayyappan, S., & Mayilsamy, K. (2010). Solar tunnel dryer with thermal storage for drying of copra. Proceedings of the 37th National & 4th International Conference on Fluid Mechanics and Fluid Power. Chennai: Indian Institute of Technology Madras.
Bhardwaj, A. K., Kumar, R., & Chauhan, R. (2019). Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Solar Energy, 177, 395–407. https://doi.org/10.1016/j.solener.2018.11.007
Condorı́, M., Echazú, R., & Saravia, L. (2001). Solar drying of sweet pepper and garlic using the tunnel greenhouse drier. Renewable Energy, 22(4), 447–460. https://doi.org/10.1016/S0960-1481(00)00098-7
Doe, P. E., Muslemuddin, M., & Sachithananthan, K. (1977). A polythene tent drier for improved sun drying of fish. Food Technology in Australia, 29(11), 437–441.
Dulawat, M. S., & Rathore, N. S. (2012). Forced convection type solar tunnel dryer for industrial applications. Agricultural Engineering International: CIGR Journal, 14(4), 75–79.
Ekechukwu, O. V., & Norton, B. (1997). Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers. Energy Conversion and Management, 38(14), 1483–1500. https://doi.org/10.1016/S0196-8904(96)00102-1
Ekechukwu, O. V. (1987). Experimental Studies of Integral-Type Natural-Circulation Solar-Energy Tropical Crop Dryers. Ph.D Thesis. Cranfield University. United Kingdom.
Exell, R. H. B. (1980). Basic design theory for a simple solar rice dryer. Renewable Energy Review Journal, 1(2), 1–14.
Gallali, Y. M., Abujnah, Y. S., & Bannani, F. K. (2000). Preservation of fruits and vegetables using solar drier: a comparative study of natural and solar drying, III; chemical analysis and sensory evaluation data of the dried samples (grapes, figs, tomatoes and onions). Renewable Energy, 19(1–2), 203–212. https://doi.org/10.1016/S0960-1481(99)00032-4
Hoedt, H. (n.d.). Small Solar Tunnel Dryer. Aislingen: Solare Brücke e.V.
Jha, A. K., & Deka, B. C. (2012). Present Status and Prospects of Ginger and Turmeric in NE States (pp. 1–5). pp. 1–5. ICAR Research Complex for NEH Region.
Kaewkiew, J., Nabnean, S., & Janjai, S. (2012). Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Engineering, 32, 433–439. https://doi.org/10.1016/j.proeng.2012.01.1290
Lawand, T. A. (1977). The potential of solar agricultural dryers in developing areas. UNIDO Conf 5, Tech for Solar Energy Utilization, 125–132.
McLean, K. A. (1989). Drying and Storing Combinable Crops (2nd ed.). Ipswich: Farming Press.
Murthy, M. V. R. (2009). A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustainable Energy Reviews, 13(4), 835–844. https://doi.org/10.1016/j.rser.2008.02.010
Muthuveerappan, V. R., Ambalavanan, G., Kunchithapatham, M., Kamaraj, G., & Ananthanatesan, T. (1985). Low costplastic-suction-type-greenhouse grain dr. ISES Cong INTERSOL 85, 1077–1081. Montreal: Pergamon Press.
Pawar, R. S., Takwale, M. G., & Bhide, V. G. (1995). Solar drying of custard powder. Energy Conversion and Management, 36(11), 1085–1096. https://doi.org/10.1016/0196-8904(94)00083-C
Rathore, N. S., & Panwar, N. L. (2010). Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy, 87(8), 2764–2767. https://doi.org/10.1016/j.apenergy.2010.03.014
Sachithananthan, K., Trim, D., & Speirs, C. I. (1983). A Solar Dome Dryer for Drying of Fish. Cairo: Food and Agriculture Organization.
Sadykov, T. A., & Khairiddinov, B. (1982). A year-round double-block greenhouse-dryer. Applied-Solar-Energy (Geliotekhnika), 18(1), 69–72.
Saravanapriya, G., & Mahendiran, R. (2017). Design and development of solar tunnel dryer with control system for large scale drying of agro products. International Journal of Agriculture Sciences, 9(40), 4626–4631.
Seveda, M. S. (2012). Design and development of walk-in type hemicylindrical solar tunnel dryer for industrial use. ISRN Renewable Energy, 2012, 1–9. https://doi.org/10.5402/2012/890820
Shaw, R. (1981). Solar drying potatoes. Appropriate Technology, 7(4), 26–27.
Yang, K. C. (1980). Solar kiln performance at a high latitude, 48 degrees N [lumber drying rate]. Forest Products Journal, 30(3), 37–40.
https://doi.org/10.21776/ub.industria.2020.009.03.9
Refbacks
- There are currently no refbacks.