Energy Sufficiency of Biomass and Wastewater in Closed Process of Sago Starch Production

Tajuddin Bantacut, Fitria Indriyani

Abstract


Abstract

Sago grows in lowland and peat swamp regions that are relatively isolated due to limited basic infrastructures, including energy supply, especially electricity. These limitations make it difficult for the production and industry of sago starch to develop. The sago starch production process generates by-products such as sago bark, pith, and liquid waste, which can be used as an energy source. This paper discusses a closed system model of an energy-independent sago starch production process from the utilization of by-products and liquid waste. A mass balance model was developed to calculate the energy potential of by-products and wastes to construct a closed system for the sago starch production process. The model's output showed that the by-product from processing 1,000 tons of sago stems per day with an optimal yield of 14% potentially generates 90,562 kWh of energy. This energy potential can meet the 26,070 kWh energy needed in sago starch production, making it possible to develop into a closed production system. Further research is needed to determine the site-specific aspects to energy sufficiency.

Keywords: closed system, energy sufficiency, sago starch

 

Abstrak

Kawasan hutan sagu berada di dataran rendah dan rawa-rawa yang relatif terisolasi karena keterbatasan infrastruktur dasar, termasuk pasokan energi, terutama listrik. Keterbatasan tersebut menyebabkan produksi dan industri pati sagu sulit berkembang. Proses produksi  pati sagu mempunyai hasil samping berupa kulit, ampas, dan limbah cair yang dapat dimanfaatkan sebagai sumber energi. Artikel ini membahas model sistem tertutup proses produksi pati sagu yang mandiri energi dari pemanfaatan hasil samping dan limbah cair. Model kesetimbangan massa dikembangkan untuk menghitung potensi energi dari hasil samping dan limbah untuk membangun sistem tertutup proses produksi pati sagu. Luaran model menunjukkan bahwa hasil samping dari pengolahan 1.000 ton batang sagu per hari dengan rendemen optimal 14% berpotensi membentuk energi sebanyak 90.562 kWh. Potensi energi ini dapat memenuhi kebutuhan energi yang diperlukan dalam pengolahan sebanyak 26.070 kWh, sehingga produksi pati sagu dapat dikembangkan menjadi sistem produksi tertutup. Penelitian lanjutan perlu dilakukan untuk mengetahui aspek spesifik lokasi terhadap kecukupan energi.

Kata kunci: kecukupan energi, pati sagu, sistem tertutup


Keywords


closed system; energy sufficiency; sago starch; kecukupan energi; pati sagu; sistem tertutup

References


Amin, N., Sabli, N., Izhar, S., & Yoshida, H. (2019). Sago wastes and its applications. Pertanika Journal Science and Technology, 27(4), 1841–1862.

Anuar, K., Zul, D., & Fitmawati. (2014). Potensi limbah sagu (Metroxylon sp.) di Kecamatan Tebing Tinggi Barat Kabupaten Kepulauan Meranti sebagai substrat penghasil biogas. Jurnal Online Mahasiswa Bidang Matematika Dan Ilmu Pengetahuan Alam, 1(1), 1–9.

Asben, A., Irawadi, T. T., Syamsu, K., & Haska, N. (2012). Kajian potensi dan pemanfaatan limbah ampas sagu setelah pretreatment. Lumbung: Jurnal Ilmiah Politeknik Pertanian Negeri Payakumbuh, 11(1), 1–11.

Awg-Adeni, D. S., Bujang, K. B., Hassan, M. A., & Abd-Aziz, S. (2013). Recovery of glucose from residual starch of sago hampas for bioethanol production. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/935852

Bantacut, T., & Pasaribu, H. (2015). Aliran tertutup massa dan potensi mandiri energi pada produksi cpo. Jurnal Teknologi Industri Pertanian, 25(3), 215–226.

Budiman, F., & Ismayana, A. (2016). Kajian Peluang Penerapan Produksi Bersih pada Industri Tepung Sagu (Studi Kasus : Industri Tepung Sagu di Tanah Baru, Bogor Utara). Undergraduate Thesis. Department of Agro-Industrial Engineering. Faculty of Agricultural Technology. IPB University. Bogor.

Chong, K. H., Law, P. L., Rigit, A. R. H., Baini, R., & Shanti, F. S. (2014). Sago bark as renewable energy. Journal of Civil Engineering, Science and Technology, 5(2), 29–34. https://doi.org/10.33736/jcest.136.2014

Denitasari, N. A., Wulanawati, A., & Purwaningsih, H. (2011). Briket Ampas Sagu Sebagai Bahan Bakar Alternatif. Undergraduate Thesis. Department of Chemistry. Faculty of Mathematics and Natural Sciences. IPB University. Bogor.

Direktorat Jenderal Perkebunan. (2020). Statistik Perkebunan Unggulan Nasional 2019-2021. Jakarta: Sekretariat Direktorat Jenderal Perkebunan.

Ehara, H., Toyoda, Y., & Johnson, D. V. (Eds.). (2018). Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5269-9

Flach, M. (1997). Sago Palm. Metroxylon sagu Rottb. Promoting the Conservation and Use of Underutilized and Neglected Crops. Rome: International Plant Genetic Resources Institute.

Fretes, E. F. de, Wardana, I. N. G., & Sasongko, M. N. (2013). Karakteristik pembakaran dan sifat fisik briket ampas empulur sagu untuk berbagai bentuk dan prosentase perekat. Rekayasa Mesin, 4(2), 169–176.

Haryanto, A., Triyono, S., & Siska, P. M. (2020). Use of water hyacinth (Eichhornia crassipes) to treat biogas effluent of a tapioca industry wastewater treatment system. Agricultural Engineering International: CIGR Journal, 22(4), 9–19.

Husin, H., Ibrahim, M. F., Kamal Bahrin, E., & Abd-Aziz, S. (2019). Simultaneous saccharification and fermentation of sago hampas into biobutanol by Clostridium acetobutylicum ATCC 824. Energy Science & Engineering, 7(1), 66–75. https://doi.org/10.1002/ese3.226

Lai, J. C., Rahman, W. A. W. A., & Toh, W. Y. (2013). Characterisation of sago pith waste and its composites. Industrial Crops and Products, 45, 319–326. https://doi.org/10.1016/j.indcrop.2012.12.046

Lam, M. K., & Lee, K. T. (2011). Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnology Advances, 29(1), 124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001

Li, Y., Qiu, Q., He, X., & Li, J. (2011). Energy use project and conversion efficiency analysis on biogas produced in breweries. World Renewable Energy Congress, 1489–1496. Sweden. https://doi.org/10.3384/ecp110571489

Narmatha, M., Sangavi, S. K., & Sripavithra, G. (2017). Effluent treatment of sago waste water by using natural coagulants. Imperial Journal of Interdisciplinary Research, 3(9), 53–59.

Neethu, A., & Murugan, A. (2021). Bioconversion of sago effluent and oil cakes for bio-butanol production using environmental isolates. Biofuels, 12(1), 35–42. https://doi.org/10.1080/17597269.2018.1446576

Nuraini. (2015). Limbah Sagu Fermentasi sebagai Pakan Alternatif Unggas. Padang: Lembaga Pengembangan Teknologi Informasi dan Komunikasi. Universitas Andalas.

Racho, P., & Pongampornnara, A. (2020). Enhanced biogas production from modified tapioca starch wastewater. Energy Reports, 6, 744–750. https://doi.org/10.1016/j.egyr.2019.09.058

Sabri, R. M., Jahim, J. M., Takriff, M. S., Yunus, N., & Trisakti, B. (2018). Comparison of methane production utilizing raw and acidogenic effluent coming from sago starch processing in anaerobic sequencing batch reactor (ASBR). Jurnal Kejuruteraan SI, 1(7), 27–36.

Santoso, B. (2018). Recovery of Starch from Sago Pith Waste and Waste Water Treatment. In Sago Palm (pp. 261–269). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5269-9_19

Sathya, J., Ravichandran, M., & Williams, A. R. E. (2011). Scope of carbon trade in sago industry. Nature Environment and Pollution Technolog, 10(1), 141–144.

Siruru, H., Syafii, W., Wistara, I. N. J., & Pari, G. (2019). Characteristics of sago pith and sago bark waste from Seram Island, Maluku, Indonesia. Biodiversitas Journal of Biological Diversity, 20(12), 3517–3526. https://doi.org/10.13057/biodiv/d201208

Supu, I., Tenriawaru, E. P., & Cambaba, S. (2017). Sifat mekanik kulit batang sagu pada berbagai kondisi. The Indonesian Green Technology Journal, 6(1), 19–24.

Tenriawaru, E. P., Supu, I., & Cambaba, S. (2018). Physical properties of sago bark. IOP Conference Series: Earth and Environmental Science, 187, 012007. https://doi.org/10.1088/1755-1315/187/1/012007

Tiro, B. M. W., Beding, P. A., & Baliadi, Y. (2018). The utilization of sago waste as cattle feed. IOP Conference Series: Earth and Environmental Science, 119, 012038. https://doi.org/10.1088/1755-1315/119/1/012038

Wan, Y. K., Sum, D. K., & Lam, H. L. (2016). Synthesise A Sustainable Sago Industry. Department of Chemical and Environmental Engineering. University of Nottingham. Malaysia Campus.

Wołowicz, M., Milewski, J., & Badyda, K. (2012). Feedwater repowering of 800 MW supercritical steam power plant. Journal of Power Technologies, 92(2), 127–134.

Yusuf, M. A., Romli, M., Suprihatin, & Wiloso, E. I. (2019). Potential of traditional sago starch: Life cycle assessment (LCA) perspective. IOP Conference Series: Materials Science and Engineering, 507, 012014. https://doi.org/10.1088/1757-899X/507/1/012014


Refbacks

  • There are currently no refbacks.