Technoeconomic Analysis of Integrated Bioethanol from Elephant Grass (Pennisetum purpureum) with Utilization of Its Residue and Lignin
Abstract
Abstract
Bioethanol has been developed as an alternative biofuel. Elephant grass is one of the lignocelluloses that can be used as a source of bioethanol. The bioethanol fermentation process should be improved along with its economic competitiveness to promote its wider application. This study aims to investigate and to evaluate the best scheme of biethanol (standalone) and the combination of bioethanol and its by-products through technoeconomic analysis. The method used is collecting data from several previous studies and simulating it with SuperPro Designer. Data from flowsheeting simulation is used as economic simulation data using Microsoft Excel. The results of this study indicate that the processing of biogas and lignin waste as fuel and lignosulfonates can increase the economic value of the bioethanol production process. The best economic value is the bioethanol production process using biogas and lignin as fuel for a Biomass Power Plant which is called Pembangkit Listrik Tenaga Biomassa (PLTBm) with a Net Present Value (NPV) of IDR 364,358,976,036, Internal Rate of Return (IRR) 11.32%, Pay Back Period (PBP) 7.2 years, and Profitability Index (PI) 1.08
Keywords: bioethanol, biogas, elephant grass, lignosulfonate, SuperPro Designer
Abstrak
Bioetanol telah dikembangkan sebagai bahan bakar nabati alternatif. Rumput gajah merupakan salah satu lignoselulosa yang dapat digunakan sebagai sumber bioetanol. Proses fermentasi bioetanol harus ditingkatkan seiring daya saing ekonomi untuk mempromosikan penerapannya yang lebih luas. Tujuan studi ini adalah untuk menginvestigasi dan mengevaluasi skema terbaik bietanol (standalone) serta kombinasi bioetanol dan produk sampingnya melalui analisis teknoekonomi. Metode yang digunakan ialah melakukan pengumpulan data dari beberapa penelitian sebelumnya dan disimulasikan dengan SuperPro Designer. Data dari simulasi flowsheeting digunakan sebagai data simulasi ekonomi menggunakan Microsoft Excel. Hasil studi ini menunjukan bahwa pengolahan biogas dan limbah lignin sebagai bahan bakar dan lignosulfonat dapat meningkatkan nilai ekonomi dari proses produksi bioetanol. Nilai ekonomi yang paling baik adalah proses produksi bioetanol dengan pemanfaatan biogas dan lignin sebagai bahan bakar Pembangkit Listrik Tenaga Biomassa (PLTBm) dengan nilai Net Present Value (NPV) Rp 364.358.976.036-; Internal Rate of Return (IRR) 11,32%, Pay Back Periode (PBP) 7,2 tahun, serta Profitability Index (PI) 1,08.
Kata kunci: bioetanol, biogas, lignosulfonate, rumput gajah, SuperPro Designer
Keywords
Full Text:
PDFReferences
Achinas, S., Leenders, N., Krooneman, J., & Euverink, G. J. W. (2019). Feasibility assessment of a bioethanol plant in the Northern Netherlands. Applied Sciences, 9(21), 4586. https://doi.org/10.3390/app9214586
Ahmad, A., Syarfi, & Atikalidia, M. (2011). Penyisihan chemical oxygen demand (COD) dan produksi biogas limbah cair pabrik kelapa sawit dengan bioreaktor hibrid anaerob bermedia cangkang sawit. Prosiding Seminar Nasional Teknik Kimia Kejuangan, A03-1-A03-8. Yogyakarta: Jurusan Teknik Kimia. Universitas Pembangunan Nasional Veteran Yogyakarta.
Amezcua-Allieri, M. A., Sánchez Durán, T., & Aburto, J. (2017). Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. Journal of Chemistry, 2017, 1–9. https://doi.org/10.1155/2017/5680105
Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523. https://doi.org/10.1016/j.rser.2012.12.022
Badan Kebijakan Fiskal Kementerian Keuangan. (2022). Pajak Pertambahan Nilai (PPN). Retrieved August 5, 2021, from https://fiskal.kemenkeu.go.id/fiskalpedia/2021/07/13/173618726358430-pajak-pertambahan-nilai-ppn
Badan Penelitian dan Pengembangan Energi Sumber Daya Mineral. (2019). Penandatanganan Nota Kesepahaman antara Badan Litbang ESDM dan Pemerintah Provinsi Nusa Tenggara Barat. Retrieved September 14, 2021, from Badan Litbang ESDM website: https://litbang.esdm.go.id/index.php/news-center/arsip-berita/penandatanganan-nota-kesepahaman-antara-badan-litbang-esdm-dan-pemerintah-provinsi-nusa-tenggara-barat
Bello, B. Z., Nwokoagbara, E., & Wang, M. (2012). Comparative Techno-economic Analysis of Biodiesel Production from Microalgae via Transesterification Methods. https://doi.org/10.1016/B978-0-444-59519-5.50027-7
Bulkan, G., Ferreira, J. A., Rajendran, K., & Taherzadeh, M. J. (2020). Techno-economic analysis of bioethanol plant by-product valorization: exploring market opportunities with protein-rich fungal biomass production. Fermentation, 6(4), 99. https://doi.org/10.3390/fermentation6040099
Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as renewable raw material. ChemSusChem, 3(11), 1227–1235. https://doi.org/10.1002/cssc.201000157
Cesaro, A., & Belgiorno, V. (2015). Combined biogas and bioethanol production: Opportunities and challenges for industrial application. Energies, 8(8), 8121–8144. https://doi.org/10.3390/en8088121
Cho, S.-K., Im, W.-T., Kim, D.-H., Kim, M.-H., Shin, H.-S., & Oh, S.-E. (2013). Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresource Technology, 131, 210–217. https://doi.org/10.1016/j.biortech.2012.12.100
Couper, J. R., Penney, W. R., Fair, J. R., & Walas, S. M. (2010). Flowsheets. In Chemical Process Equipment (pp. 17–29). Elsevier & Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-372506-6.00006-X
de Jong, S., Hoefnagels, R., Wetterlund, E., Pettersson, K., Faaij, A., & Junginger, M. (2017). Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations. Applied Energy, 195, 1055–1070. https://doi.org/10.1016/j.apenergy.2017.03.109
Demirbas, A. (2017). Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(6), 592–598. https://doi.org/10.1080/15567036.2016.1248798
Dempfle, D., Kröcher, O., & Studer, M. H.-P. (2021). Techno-economic assessment of bioethanol production from lignocellulose by consortium-based consolidated bioprocessing at industrial scale. New Biotechnology, 65, 53–60. https://doi.org/10.1016/j.nbt.2021.07.005
Dererie, D. Y., Trobro, S., Momeni, M. H., Hansson, H., Blomqvist, J., Passoth, V., … Ståhlberg, J. (2011). Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresource Technology, 102(6), 4449–4455. https://doi.org/10.1016/j.biortech.2010.12.096
Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., & Wu, C. (2011). Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products, 34(3), 1629–1634. https://doi.org/10.1016/j.indcrop.2011.06.002
Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water, 11(5), 921. https://doi.org/10.3390/w11050921
Fitriadi, S., Triatmoko, E., & Wahyu, T. (2017). Analisis sensitivitas usahatani budidaya rumput gajah mini (Pennisetum purpurium. S) di Kelurahan Syamsudin Noor Kecamatan Landasan Ulin Kota Banjarbaru Provinsi Kalimantan Selatan. Media Sains, 10(1), 54–61.
Herawati, N., Reynaldi, D. U., & Atikah. (2019). Pengaruh jenis katalis asam dan waktu fermentasi terhadap % yield bioetenol dari rumput gajah (Pennistum purpureum Schumach). Jurnal Distilasi, 4(2), 19–26. https://doi.org/10.32502/jd.v4i2.2210
International Renewable Energy Agency. (2013). Bioethanol. In Road Transport: The Cost of Renewable Solutions. Retrieved from https://www.irena.org/costs/Transportation/Bioethanol
Ismiyati, Suryani, A., Mangunwidjaya, D., Machfud, & Hambali, E. (2009). Pembuatan natrium lignosulfonat berbahan dasar lignin isolat tandan Kosong kelapa sawit : Identifikasi, dan uji kinerjanya sebagai bahan pendispersi. Jurnal Teknologi Industri Pertanian, 19(1), 25–29.
Kapila, S., Oni, A. O., Gemechu, E. D., & Kumar, A. (2019). Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems. Energy, 170, 592–603. https://doi.org/10.1016/j.energy.2018.12.183
Kementerian Energi dan Sumber Daya Mineral. Peraturan Menteri ESDM No. 12 Tahun 2015 tentang Perubahan Ketiga Atas Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 32 Tahun 2008 tentang Penyediaan, Pemanfaatan Dan Tata Niaga Bahan Bakar Nabati (Biofuel) Sebagai Bahan Bakar Lain. , (2015). Indonesia.
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 4 Tahun 2020 Tentang Perubahan Kedua Atas Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 50 Tahun 2017 Tentang Pemanfaatan Sumber Energi Terbarukan untuk Penyediaan Tenaga L. , (2020).
Latif, M. A., Mehta, C. M., & Batstone, D. J. (2015). Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Research, 81, 288–293. https://doi.org/10.1016/j.watres.2015.05.062
Le, H. D. T., & Le, V. V. M. (2014). Effects of initial pH value of the medium on the alcoholic fermentation performance of Saccharomyces cerevisiae cells immobilized on nipa leaf sheath pieces. Songklanakarin Journal of Science and Technology, 36(6), 663–667.
Lide, D. R. (1995). CRC Handbook of Chemistry and Physics. Bosa Roca: CRC Press.
Liu, C., Huang, Y., Wang, X., Tai, Y., Liu, L., & Liu, H. (2018). Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Integrated Environmental Assessment and Management, 14(1), 139–149. https://doi.org/10.1002/ieam.1969
Liu, Y.-K., Chen, W.-C., Huang, Y.-C., Chang, Y.-K., Chu, I.-M., Tsai, S.-L., & Wei, Y.-H. (2017). Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. Journal of Bioscience and Bioengineering, 124(2), 184–188. https://doi.org/10.1016/j.jbiosc.2017.02.018
Lumaela, A. K., Otok, B. W., & Sutikno. (2013). Pemodelan chemical oxygen demand (COD) sungai di Surabaya dengan metode mixed geographically weighted regression. Jurnal Sains Dan Seni ITS, 2(1), D100–D105.
Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., & Ng, W. J. (2015). Comparison of single-stage and two-phase anaerobic sludge digestion systems – Performance and microbial community dynamics. Chemosphere, 140, 54–62. https://doi.org/10.1016/j.chemosphere.2014.07.028
Mishra, A., Kumar, A., & Ghosh, S. (2018). Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario. 3 Biotech, 8(3), 142. https://doi.org/10.1007/s13205-018-1135-0
Mohammed, I., Abakr, Y., Kazi, F., Yusup, S., Alshareef, I., & Chin, S. (2015). Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies, 8(5), 3403–3417. https://doi.org/10.3390/en8053403
Moset, V., Poulsen, M., Wahid, R., Højberg, O., & Møller, H. B. (2015). Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial Biotechnology, 8(5), 787–800. https://doi.org/10.1111/1751-7915.12271
Mulyawan, M., Setyowati, E., & Widjaja, A. (2015). Surfaktan sodium ligno sulfonat (SLS) dari debu sabut kelapa. Jurnal Teknik ITS, 4(1), f-1-f-3.
Muñoz, I., Flury, K., Jungbluth, N., Rigarlsford, G., Canals, L. M., & King, H. (2014). Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. The International Journal of Life Cycle Assessment, 19(1), 109–119. https://doi.org/10.1007/s11367-013-0613-1
Nasution, H. I., Dewi, R. S., & Hasibuan, P. (2016). Pembuatan etanol dari rumput gajah (Pennisetum purpureum schumach) menggunakan metode hidrolisis asam dan fermentasi Saccharomyces cerevsiae. Jurnal Pendidikan Kimia, 8(2), 144–151.
Noviani, H., Supartono, & Siadi, K. (2014). Pengolahan limbah serbuk gergaji kayu sengon laut menjadi bioetanol menggunakan Saccharomycess cerevisiae. Indonesian Journal of Chemical Research, 3(2), 147–151.
Nwufo, O. C., Nwafor, O. M. I., & Igbokwe, J. O. (2016). Effects of blends on the physical properties of bioethanol produced from selected Nigerian crops. International Journal of Ambient Energy, 37(1), 10–15. https://doi.org/10.1080/01430750.2013.866907
Oyegoke, T., & Dabai, F. (2018). Techno-economic feasibility study of bioethanol production from a combined cellulose and sugar feedstock in Nigeria: 1-modeling, simulation and cost evaluation. Nigerian Journal of Technology, 37(4), 913. https://doi.org/10.4314/njt.v37i4.8
Pannucharoenwong, N., Worasaen, A., Benjapiyaporn, C., Jongpluempiti, J., & Vengsungnle, P. (2017). Comparison of bio-methane gas wobbe index in different animal manure substrate. Energy Procedia, 138, 273–277. https://doi.org/10.1016/j.egypro.2017.10.056
Papapetridis, I., Goudriaan, M., Vázquez Vitali, M., de Keijzer, N. A., van den Broek, M., van Maris, A. J. A., & Pronk, J. T. (2018). Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnology for Biofuels, 11(1), 17. https://doi.org/10.1186/s13068-017-1001-z
Parto, S. G., Christensen, J. M., Pedersen, L. S., Hansen, A. B., Tjosås, F., Spiga, C., … Jensen, A. D. (2019). Liquefaction of lignosulfonate in supercritical ethanol using alumina-supported NiMo catalyst. Energy & Fuels, 33(2), 1196–1209. https://doi.org/10.1021/acs.energyfuels.8b03519
Pobas, T. T. W., Proborini, W. D., & Yuniningsih, S. (2017). Pengaruh waktu pada proses fermentasi dari rumput gajah. Eureka : Jurnal Penelitian Mahasiswa Teknik Sipil Dan Teknik Kimia, 1(1), 1–12.
Popp, J., Lakner, Z., Harangi-Rákos, M., & Fári, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559–578. https://doi.org/10.1016/j.rser.2014.01.056
Pujawan, I. N. (2012). Ekonomi Teknik. Surabaya: Guna Widya.
Riggio, V., Comino, E., & Rosso, M. (2015). Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp. Renewable Energy, 83, 1043–1049. https://doi.org/10.1016/j.renene.2015.05.056
Rusanen, A., Lappalainen, K., Kärkkäinen, J., Tuuttila, T., Mikola, M., & Lassi, U. (2019). Selective hemicellulose hydrolysis of Scots pine sawdust. Biomass Conversion and Biorefinery, 9(2), 283–291. https://doi.org/10.1007/s13399-018-0357-z
Sa’adah, A. F., Fauzi, A., & Juanda, B. (2017). Peramalan penyediaan dan konsumsi bahan bakar minyak Indonesia dengan model sistem dinamik. Jurnal Ekonomi Dan Pembangunan Indonesia, 17(2), 118–137. https://doi.org/10.21002/jepi.v17i2.661
Sahoo, S., Seydibeyoğlu, M. Ö., Mohanty, A. K., & Misra, M. (2011). Characterization of industrial lignins for their utilization in future value added applications. Biomass and Bioenergy, 35(10), 4230–4237. https://doi.org/10.1016/j.biombioe.2011.07.009
Shang, Y., Chen, M., Zhao, Q., Su, R., Huang, R., Qi, W., & He, Z. (2017). Enhanced enzymatic hydrolysis of lignocellulose by ethanol assisted FeCl3 pretreatment. Chemical Engineering Transactions, 61, 781–786.
Siahaan, S. H., Dolant, S., Pabeta, A. T., & Murwanto, T. A. (2013). Peran Lembaga Litbang, Industri, dan Pemerintah dalam Rantai Pasokan Industri Bioetanol. Jakarta: LIPI Press.
Singh, B. P., Singh, H. P., & Obeng, E. (2013). Elephantgrass. In Biofuel crops: production, physiology and genetics (pp. 271–291). Wallingford: CABI. https://doi.org/10.1079/9781845938857.0271
Song, H., Dotzauer, E., Thorin, E., & Yan, J. (2014). Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellet and bioethanol. International Journal of Energy Research, 38(5), 551–563. https://doi.org/10.1002/er.3039
Sujatmiko. (2017). Siaran Pers Nomor: 00042.Pers/04/SJI/2017. BPP Pembangkitan PT PLN (Persero) Turun, Penyediaan Listrik Semakin Efisien. Retrieved from Kementerian Energi dan Sumber Daya Mineral Republik Indonesia website: https://www.esdm.go.id/id/media-center/arsip-berita/bpp-pembangkitan-pt-pln-persero-turun-penyediaan-listrik-semakin-efisien
Sun, Y., & Cheng, J. (2005). Dilute acid pretreatment of rye straw and bermuda grass for ethanol production. Bioresource Technology, 96(14), 1599–1606. https://doi.org/10.1016/j.biortech.2004.12.022
Thungphotrakul, N., Dittanet, P., Loykulnunt, S., Tanpichai, S., & Parpainainar, P. (2019). Synthesis of sodium lignosulfonate from lignin extracted from oil palm empty fruit bunches by acid/alkaline treatment for reinforcement in natural rubber composites. IOP Conference Series: Materials Science and Engineering, 526, 012022. https://doi.org/10.1088/1757-899X/526/1/012022
Todaro, L., Rita, A., Cetera, P., & D’Auria, M. (2015). Thermal treatment modifies the calorific value and ash content in some wood species. Fuel, 140, 1–3. https://doi.org/10.1016/j.fuel.2014.09.060
Wang, L., Sharifzadeh, M., Templer, R., & Murphy, R. J. (2013). Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Applied Energy, 111, 1172–1182. https://doi.org/10.1016/j.apenergy.2012.08.048
Wang, S., Ma, F., Ma, W., Wang, P., Zhao, G., & Lu, X. (2019). Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 11(1), 133. https://doi.org/10.3390/w11010133
Yamdagni, R., & Kebarle, P. (1974). The hydrogen bond energies in ClHCl − and Cl − (HCl) n. Canadian Journal of Chemistry, 52(13), 2449–2453. https://doi.org/10.1139/v74-357
Yang, Y., Boots, K., & Zhang, D. (2012). A sustainable ethanol distillation system. Sustainability, 4(1), 92–105. https://doi.org/10.3390/su4010092
Zambare, V. P., & Christopher, L. P. (2012). Optimization of enzymatic hydrolysis of corn stover for improved ethanol production. Energy Exploration & Exploitation, 30(2), 193–205. https://doi.org/10.1260/0144-5987.30.2.193
Zhao, L., Zhang, X., Xu, J., Ou, X., Chang, S., & Wu, M. (2015). Techno-economic analysis of bioethanol production from lignocellulosic biomass in China: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies, 8(5), 4096–4117. https://doi.org/10.3390/en8054096
Zimmermann, A. W., Wunderlich, J., Müller, L., Buchner, G. A., Marxen, A., Michailos, S., … Schomäcker, R. (2020). Techno-economic assessment guidelines for CO2 utilization. Frontiers in Energy Research, 8(5). https://doi.org/10.3389/fenrg.2020.00005
https://doi.org/10.21776/ub.industria.2022.011.01.7
Refbacks
- There are currently no refbacks.