The Functionality of Probiotic Bacteria Microencapsulation by Spray Drying: A Literature Review

In-In Hanidah, Annisa Indah Kirana, Bambang Nurhadi, Debby Moody Sumanti



Probiotic-based products are associated with many health benefits. The viability of probiotics is necessary to provide health benefits, but it is lost during processing, storage, and gastrointestinal tract. The viability of probiotics can be maintained by applying the spray drying encapsulation technique. This review article discusses probiotic bacteria, encapsulant ingredients, the principle of spray drying in microencapsulation, and the functional properties of spray drying probiotic microcapsules. This article uses a non-research method with a literature review of various sources such as research journals and related books. Based on existing studies, the viability of probiotic spray drying results is influenced by the bacterial culture used, the type and concentration of the encapsulated material, and the spray drying conditions (feed temperature, inlet temperature, and outlet temperature). Probiotic microcapsules spray drying has excellent potential in functional food formulations, and its commercial applications will benefit both the industry and consumers.

Keywords: functionality, microencapsulation, probiotics, spray drying, viability



Produk berbasis probiotik sering dikaitkan dengan banyak manfaat kesehatan. Viabilitas probiotik diperlukan untuk memberi manfaat kesehatan, tetapi hal tersebut hilang selama pemrosesan, penyimpanan, dan melewati saluran pencernaan. Viabilitas probiotik dapat dipertahankan dengan penerapan teknik enkapsulasi pengeringan semprot. Review artikel ini membahas mengenai bakteri probiotik, bahan enkapsulasi, prinsip pengeringan semprot dalam mikroenkapsulasi, dan sifat fungsional mikrokapsul probiotik pengeringan semprot. Penulisan artikel ini menggunakan metode non-research dengan literature review berbagai sumber, seperti jurnal penelitian dan buku yang terkait. Hasil review artikel memberikan informasi bahwa viabilitas probiotik hasil pengeringan semprot dipengaruhi oleh spesies dan strain bakteri yang digunakan, jenis dan konsentrasi bahan enkapsulasi, serta kondisi pengeringan semprot (suhu umpan, suhu masuk, dan suhu keluar). Mikrokapsul probiotik pengeringan semprot memiliki potensi besar dalam formulasi pangan fungsional sehingga aplikasi komersialnya akan menguntungkan industri dan konsumen.

Kata kunci: fungsionalitas, mikroenkapsulasi, pengeringan semprot, probiotik, viabilitas


functionality; microencapsulation; probiotics; spray drying; viability; fungsionalitas; mikroenkapsulasi; pengeringan semprot; probiotik; viabilitas

Full Text:



Amin, T., Thakur, M., & Jain, S. C. (2013). Microencapsulation-the future of probiotic cultures. Journal of Microbiology, Biotechnology and Food Sciences, 3(1), 35–43.

Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240–251.

Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17–24.

Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT, 99(May 2018), 583–593.

Arslan-Tontul, S., Erbas, M., & Gorgulu, A. (2019). The use of probiotic-loaded single- and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840–849.

Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685–690.

Assadpour, E., & Jafari, S. M. (2019). Advances in spray-drying encapsulation of food bioactive ingredients: from microcapsules to nanocapsules. Annual Review of Food Science and Technology, 10(1), 103–131.

Bustamante, M., Oomah, B. D., Rubilar, M., & Shene, C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chemistry, 216, 97–105.

Chávez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology, 25(7–8), 1193–1201.

Chen, H., Fu, X., & Luo, Z. (2015). Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chemistry, 168, 302–310.

Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food Science and Technology, 71, 169–174.

Dolly, P., Anishaparvin, A., Joseph, G. S., & Anandharamakrishnan, C. (2011). Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. Journal of Microencapsulation, 28(6), 568–574.

Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, 882–892.

FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. FAO Food and Nutrition Paper 85. London Ontario.

Fernandes, R. V. de B., Silva, E. K., Borges, S. V., de Oliveira, C. R., Yoshida, M. I., da Silva, Y. F., … Botrel, D. A. (2017). Proposing novel encapsulating matrices for spray-dried ginger essential oil from the whey protein isolate-inulin/maltodextrin blends. Food and Bioprocess Technology, 10(1), 115–130.

Ferrando, V., Quiberoni, A., Reinhemer, J., & Suárez, V. (2015). Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiology, 48, 63–71.

Fink, A. (2014). Conducting Research Literature Riviews. (V. Knight, Ed.) (Fourth). Los Angeles London: SAGE.

Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306–312.

Gbassi, G. K., & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4(1), 149–163.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., … Gaiani, C. (2017). Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 193, 10–19.

Hamaguchi, S., Zafar, M. A., Cammer, M., & Weiser, J. N. (2018). Capsule prolongs survival of Streptococcus pneumoniae during starvation. Infection and Immunity, 86(3).

Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291–311.

Huang, S., Cauty, C., Dolivet, A., Le Loir, Y., Chen, X. D., Schuck, P., … Jeantet, R. (2016). Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria. Journal of Functional Foods, 23, 453–463.

Huang, S., Vignolles, M., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science & Technology, 63, 1–17.

Jantzen, M., Göpel, A., & Beermann, C. (2013). Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115(4), 1029–1036.

Khem, S., Bansal, V., Small, D. M., & May, B. K. (2016). Comparative influence of pH and heat on whey protein isolate in protecting Lactobacillus plantarum A17 during spray drying. Food Hydrocolloids, 54, 162–169.

Leyva-porras, C., López-pablos, A. L., Alvarez-salas, C., Pérez-urizar, J., & Saavedra-Leos, Z. (2014). Physical Properties of Inulin and Technological Applications. Polysaccharides, 1–22.

Lian, W. (2002). Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology, 74(1–2), 79–86.

Liu, X.-D., Atarashi, T., Furuta, T., Yoshii, H., Aishima, S., Ohkawara, M., & Linko, P. (2001). Microencapsulation of emulsified hydrophobic flavors by spray drying. Drying Technology, 19(7), 1361–1374.

Lutz, R., Aserin, A., Wicker, L., & Garti, N. (2009). Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids and Surfaces B: Biointerfaces, 74(1), 178–185.

Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805.

Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15–25.

Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., & Vinderola, G. (2013). Study of the effects of spray-drying on the functionality of probiotic lactobacilli. International Journal of Dairy Technology, 66(2), 155–161.

Panghal, A., Jaglan, S., Sindhu, N., Anshid, V., Sai Charan, M. V., Surendran, V., & Chhikara, N. (2019). Microencapsulation for Delivery of Probiotic Bacteria (pp. 135–160).

Perdana, J., Bereschenko, L., Fox, M. B., Kuperus, J. H., Kleerebezem, M., Boom, R. M., & Schutyser, M. A. I. (2013). Dehydration and thermal inactivation of Lactobacillus plantarum WCFS1: Comparing single droplet drying to spray and freeze drying. Food Research International, 54(2), 1351–1359.

Perdana, J., Fox, M. B., Siwei, C., Boom, R. M., & Schutyser, M. A. I. (2014). Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1. Food Research International, 56, 9–17.

Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros, G., Lagaron, J. M., & López-Rubio, A. (2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168, 124–133.

Petreska Ivanovska, T., Petruševska-Tozi, L., Dabevska Kostoska, M., Geškovski, N., Grozdanov, A., Stain, C., … Mladenovska, K. (2012). Microencapsulation of Lactobacillus casei in chitosan-ca-alginate microparticles using spray-drying method. Macedonian Journal of Chemistry and Chemical Engineering, 31(1), 115–123.

Pinto, S. S., Fritzen-Freire, C. B., Muñoz, I. B., Barreto, P. L. M., Prudêncio, E. S., & Amboni, R. D. M. C. (2012). Effects of the addition of microencapsulated Bifidobacterium BB-12 on the properties of frozen yogurt. Journal of Food Engineering, 111(4), 563–569.

Prasanna, P. H. P., Grandison, A. S., & Charalampopoulos, D. (2014). Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International, 55, 247–262.

Rajam, R., & Anandharamakrishnan, C. (2015a). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology, 60(2), 773–780.

Rajam, R., & Anandharamakrishnan, C. (2015b). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95–103.

Sapei, L., Naqvi, M. A., & Rousseau, D. (2012). Stability and release properties of double emulsions for food applications. Food Hydrocolloids, 27(2), 316–323.

Sarkar, S. (2020). Spray drying encapsulation of probiotics for functional food formulation-a review. Novel Techniques in Nutrition & Food Science, 5(2).

Setiarto, R. H. B., Kusumaningrum, H. D., Jenie, B. S. L., & Khusniati, T. (2018). Pengembangan teknologi mikroenkapsulasi bakteri probiotik dan manfaatnya untuk kesehatan. Jurnal Veteriner : Jurnal Kedokteran Hewan Indonesia, 19(4), 574–589.

Shahidi, F., & Han, X. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, 33(6), 501–547.

Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., … Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444–454.

Sousa, S., Gomes, A. M., Pintado, M. M., Malcata, F. X., Silva, J. P., Sousa, J. M., … Freitas, A. C. (2012). Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Engineering in Life Sciences, 12(4), 457–465.

Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62(1–2), 47–55.

Valenzuela, C., & Aguilera, J. M. (2015). Effects of maltodextrin on hygroscopicity and crispness of apple leathers. Journal of Food Engineering, 144, 1–9.

Wang, Y.-C., Yu, R.-C., & Chou, C.-C. (2004). Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. International Journal of Food Microbiology, 93(2), 209–217.

Wisniewski, R. (2015). Spray drying technology review. In 45th International Conference on Environmental Systems. Washington.

Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283(March), 110033.


  • There are currently no refbacks.