Penentuan Isolat Bakteri Asetogenik yang Mampu Menghasilkan Total Asam Tertinggi pada Pengolahan Limbah Cair Tahu secara Anaerob

Hana Afifah, Nur Hidayat, Wignyanto Wignyanto

Abstract


Abstrak

Tujuan penelitian ini adalah mengetahui pengaruh dari persentase inokulum dan waktu inkubasi terhadap kemampuan isolat bakteri asetogenik untuk memproduksi total asam tertinggi serta mengetahui karakteristik dari isolat bakteri tersebut. Rancangan Acak Kelompok (RAK) disusun secara faktorial dengan dua faktor yaitu persentase inokulum (I) (10%, 15%, 20%) serta faktor waktu inkubasi (W) (24 jam, 48 jam, 72 jam). Kombinasi perlakuan terbaik pada isolat bakteri asetogenik dalam menghasilkan asam adalah I1W1, yakni persentase inokulum 10% dan waktu inkubasi 24 jam. Pada perlakuan ini kadar asam asetat yang dihasilkan adalah 3,853%, pH 5,544, total bakteri 7,7 x 107 CFU/ml, dengan kadar glukosa 2,5237%. Karakteristik dari isolat bakteri asetogenik terpilih secara morfologi koloni yaitu memiliki kenampakan warna putih, bentuk tidak beraturan, permukaan (elevasi) datar, dan tepi yang bergelombang. Berdasarkan morfologi sel, isolat bakteri merupakan bakteri Gram negatif bentuk batang. Berdasarkan identifikasi secara biokimia, isolat bakteri ini adalah Acinetobacter sp dengan probabilitas 51,25%.

Kata kunci: asam asetat, bakteri asetogenik, isolasi, persentase inokulum, waktu inkubasi

 

Abstract

The purpose of this research was to understand the effect of inoculum percentage and incubation time of acetogenic bacteria to produce total acid and to understand the characteristics of acetogenic bacteria that could produce the highest total acid. The experimental design used was Randomized Block Design that arranged in factorial with two factors: percentage of inoculum (I) (10%, 15%, 20%) and the factor Incubation time (W) (24 hours, 48 hours, 72 hours). The best treatment combination on isolated acetogenic bacteria to produce total acid was I1W1 (10% inoculum percentage and 24 hours incubation time ). This treatment produced 3.853% acetic acid levels, 5.544 pH, 7.7 x 107 CFU / ml total bacteria and 2.5237% glucose levels. The characteristics of isolated acetogenic bacteria based on colony morphology was white, irregular shape, surface (elevation) flat, and wavy edges. Based on cell morphology, the isolated bacteria were Gram-negative rod shape. Based on the biochemical identification, the isolated bacteria is an Acinetobacter sp with 51.25% probability.

Keywords: acetic acid, acetogenic bacteria, isolation, percentage of inoculum, incubation time

 


Keywords


asam asetat; bakteri asetogenik; isolasi; persentase inokulum; waktu inkubasi; acetic acid; acetogenic bacteria; isolation; percentage of inoculum; incubation time

Full Text:

PDF

References


Abdel-el-haleem, D. (2003). Minireview Acinetobacter : environmental and biotechnological applications. African Journal of Biotechnology, 2(4), 71–74. https://doi.org/10.4314/ajb.v2i4.14828

Aneja, K. R. (2003). Experiments in Microbiology, Plant Pathology and Biotechnology. New Delhi: New Age International.

Cappuccino, J. G., & Sherman, N. (2011). Microbiology: A Laboratory Manual (9th editio). San Francisco: Benjamin Cummings.

Constantiniu, S., Romaniuc, A., Lancu, L. S., Filimon, R., & Taraşi, L. (2004). Cultural and biochemical characteristics of Acinetobacter Spp. strains isolated from hospital units. The Journal of Preventive Medicine, 12(3-4), 35–42.

Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources: An Introduction. Weinheim: Wiley-VCH.

Fardiaz, S. (1988). Fisiologi Fermentasi. Bogor: IPB Press.

Fontaine, F. E., Peterson, W. H., McCoy, E., Johnson, M. J., & Ritter, G. J. (1942). A new type of glucose fermentation by Clostridium thermoaceticum n.sp. Journal of Bacteriology, 42(6), 701–715.

Gibbons, W. R., & Westby, C. A. (1986). Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production. Applied and Environmental Microbiology, 52(4), 960–962.

Griffin, M. E., McMahon, K. D., Mackie, R. I., & Raskin, L. (1998). Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnology and Bioengineering, 57(3), 342–355.

https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I

Hafid, H. S., Rahman, N. ’Aini A., Abd-Aziz, S., & Hassan, M. A. (2011). Enhancement of organic acids production from model kitchen waste via anaerobic digestion. African Journal of Biotechnology, 10(65), 14507–14515. https://doi.org/10.5897/AJB11.1360

Hidayat, N., Padaga, M. C., & Suhartini, S. (2006). Mikrobiologi Industri. Yogyakarta: Andi Offset.

Johnson, W. K. (2000). Chemical Economics Handbook: Marketing Research Report Acetic Acid. Washington DC: Taylor and Francis.

Kunaepah, U. (2008). Pengaruh Lama Fermentasi dan Konsentrasi Glukosa terhadap Aktivitas Antibakteri, Polifenol Total dan Mutu Kimia Kefir Susu Kacang Merah. Tesis. Program Magister Gizi Masyarakat. Universitas Diponegoro. Semarang.

Madigan, M. T., Martinko, J. M., Stahl, D. A., & Clark, D. P. (2010). Brock Biology of Microorganisms (13th Ed). San Francisco: Benjamin Cummings.

Metcalf & Eddy Inc., Tchobanoglous, G., Burton, F., & Stensel, H. D. (2003). Wastewater Engineering: Treatment and Reuse (4th Ed). New York: McGraw-Hill Education.

Mohagheghi, A., Evans, K., Chou, Y.-C., & Zhang, M. (2002). Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology, 98(1), 885–898. https://doi.org/10.1385/ABAB:98-100:1-9:885

Mushlihah, S., & Herumurti, W. (2011). Pengaruh pH dan Konsentrasi Zymomonas mobilis untuk Produksi Etanol dari Sampah Buah Jeruk. Skripsi. Fakultas Teknik Sipil dan Perencanaan. Institut Teknologi Sepuluh November. Surabaya.

Nie, Y., Liu, H., Du, G., & Chen, J. (2008). Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system. Bioresource Technology, 99(8), 2989–2995. https://doi.org/10.1016/j.biortech.2007.06.018

Nugroho SP, R. B. A. (2012). Hubungan faktor risiko terjadinya Acinetobacter sp MDRO terhadap kematian penderita sepsis di PICU Rumah Sakit Dr Kariadi Semarang. Jurnal Kedokteran Diponegoro, 1(1).

Plaza, G., Robredo, P., Pacheco, O., & Saravia Toledo, A. (1996). Anaerobic treatment of municipal solid waste. Water Science and Technology, 33(3), 169–175. https://doi.org/10.1016/0273-1223(96)00310-1

Rao, A. S. (2006). Introduction to Microbiology. New Delhi: Prentice-Hall of India Private Limited.

Romero-Cortes, T., Robles-Olvera, V., Rodriguez-Jimenes, G., & Ramirez-Lepe, M. (2012). Isolation and characterization of acetic acid bacteria in cocoa fermentation. African Journal of Microbiology Research, 6(2), 339–347. https://doi.org/10.5897/AJMR11.986

Ruggeri, B., Tommasi, T., & Sassi, G. (2009). Experimental kinetics and dynamics of hydrogen production on glucose by hydrogen forming bacteria (HFB) culture. International Journal of Hydrogen Energy, 34(2), 753–763. https://doi.org/10.1016/j.ijhydene.2008.10.076

Saady, N. M. C. (2013). Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. International Journal of Hydrogen Energy, 38(30), 13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122

Saccaro, D. M., Hirota, C. Y., Tamime, A. Y., & Nogueira De Oliveira, M. (2011). Evaluation of different selective media for enumeration of probiotic micro-organisms in combination with yogurt starter cultures in fermented milk. African Journal of Microbiology Research, 5(23), 3901–3906. https://doi.org/10.5897/AJMR-11-117

Seeley, H. W., Vandermark, P. J., & Lee, J. J. (2001). Microbes in Action: A Laboratory Manual of Microbiology (4th Ed). New York: W. H. Freeman.

Septyana, S. Y., Hidayat, N., & Anggarini, S. (2014). Efektivitas Sistem Wastewater Double Treatment dengan Kombinasi Biofilter Anaerob-Aerob pada Proses Pengolahan Limbah Cair Tahu. Skripsi. Fakultas Teknologi Pertanian. Universitas Brawijaya. Malang.

Shafiee, G., Mortazavian, A. M., Mohammadifar, M. A., Koushki, M. R., Mohammadi, A., & Mohammadi, R. (2010). Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. African Journal of Microbiology Research, 4(12), 1265–1274.

Sharafi, S. M., Rasooli, I., & Beheshti-Maal, K. (2010). Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iranian Journal of Microbiology, 2(1), 41–48.

Sim, J. H., Kamaruddin, A. H., & Long, W. S. (2008). Biocatalytic conversion of CO to acetic acid by Clostridium aceticum—Medium optimization using response surface methodology (RSM). Biochemical Engineering Journal, 40(2), 337–347. https://doi.org/10.1016/j.bej.2008.01.006

Spath, P. L., & Dayton, D. C. (2003). Preliminary Screening -- Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas. Golden, Colorado. https://doi.org/10.2172/15006100

Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48(6), 2589–2594. https://doi.org/10.1021/jf991333m

Suciati, A., & Muntalif, B. S. (2011). Dinamika Pertumbuhan Mikroorganisme yang Berperan pada Degradasi Biowaste dalam Reaktor Anaerob Tercurah. Skripsi. Fakultas Teknik Sipil dan Lingkungan. Institut Teknologi Bandung. Bandung.

Sudarmadji, S., Haryono, B., & Suhardi. (1997). Prosedur Analisa untuk Bahan Makanan dan Pertanian. Yogyakarta: Liberty.

Waluyo, L. (2010). Teknik Metode Dasar Mikrobiologi. Malang: UMM Press.

Zhang, B., He, P. jing, Ye, N. fang, & Shao, L. ming. (2008). Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresource Technology, 99(4), 855–862. https://doi.org/10.1016/j.biortech.2007.01.010




https://doi.org/10.21776/ub.industria.2018.007.01.6

Refbacks

  • There are currently no refbacks.