Systematic Review on Characterization of Tannase from Agricultural By-Products

Nurul Adlin Azaman Shah, Azlina Mansor, Raseetha Vani Siva Manikam



Tannin-rich compounds are widely produced as by-products of many agro-industrial processes. Tannase is an attractive hydrolase for the bioconversion of tannin-rich materials into value-added products by accelerating the hydrolysis of ester and depside linkages. It has opened new opportunities in several industrial sectors, such as food, drinks, and medicines. Primary sources of tannase are microorganisms, particularly bacteria. Tannases or tannin acyl hydrolases, are an important group of biotechnologically relevant enzymes in several industrial applications. Microbial tannases are mostly induced extracellular enzymes produced by submerged and solid-state fermentation. Tannins containing low-value agro-industrial wastes are being extensively used in industries. This review provides a more in-depth knowledge of the research related to the biochemical characteristics of the tannase enzyme activity (in terms of molecular weight, the effect of pH, the effect of temperature, the effect of metal ions, inhibitor, and chelator), extraction, and purification methods. Additionally, the potential use of agricultural waste as a substrate for tannase production has also been reviewed, including the utilization of pomegranate peel waste (PmPW), banana peel waste (BPW), or potato peel waste (PtPW).

Keywords: agricultural waste, tannase, tannin



Senyawa kaya tanin diproduksi secara luas sebagai produk sampingan dari banyak proses agroindustri. Tannase adalah hidrolase yang menarik untuk biokonversi bahan kaya tanin menjadi produk bernilai tambah dengan mempercepat hidrolisis ikatan ester dan depside. Hal tersebut telah membuka peluang baru di beberapa sektor industri, seperti makanan, minuman, obat-obatan, dan sebagainya. Sumber utama tannase adalah mikroorganisme, terutama bakteri. Tannase atau tanin asil hidrolase, adalah kelompok penting dari enzim yang relevan secara bioteknologi yang digunakan dalam beberapa aplikasi industri. Tannase dari mikroba sebagian besar diinduksi enzim ekstraseluler dan diproduksi oleh fermentasi terendam dan fermentasi keadaan padat. Tanin yang terkandung dalam limbah agroindustri bernilai rendah banyak digunakan dalam industri. Ulasan ini memberikan pengetahuan yang lebih mendalam tentang penelitian terkait karakteristik biokimia aktivitas enzim tannase (dari segi berat molekul, pengaruh pH, pengaruh suhu, pengaruh ion logam, inhibitor, dan chelator), metode ekstraksi dan pemurnian. Selain itu juga telah dikaji potensi pemanfaatan limbah pertanian sebagai prekursor ekstrak tannase, antara lain pemanfaatan limbah kulit buah delima (PmPW), limbah kulit pisang (BPW), atau limbah kulit kentang (PtPW).

Kata Kunci: limbah pertanian, tannase, tannin


agricultural waste; tannase; tannin

Full Text:



Aharwar, A., & Parihar, D. K. (2018). Tannases: Production, properties, applications. Biocatalysis and Agricultural Biotechnology, 15(June), 322–334.

Aharwar, A., & Parihar, D. K. (2019). Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. Biocatalysis and Agricultural Biotechnology, 18(January), 101014.

Al-Mraai, S. T. Y., Al-Fekaiki, D. F., & Al-Manhel, A. J. A. (2019). Purification and characterization of tannase from the local isolate of Aspergillus niger. Journal of Applied Biology and Biotechnology, 7(1), 29–34.

Ben Amara, F., Bouzid, M., Sahnoun, M., Ben Nasr, Y., Jaouadi, B., Bejar, S., & Jemli, S. (2022). Valorization of potato peels starch for efficient β‐cyclodextrin production and purification through an eco‐friendly process. Starch - Stärke, 74(9–10), 2200037.

Bhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7, 100212.

Chuck-Hernández, C., Pérez-Carrillo, E., Heredia-Olea, E., & Serna-Saldívar, S. O. (2011). Sorghum as a multifunctional crop for bioethanol production in Mexico: Technologies, advances and improvement opportunities. Revista Mexicana de Ingeniera Quimica, 10(3), 529–549.

Dhiman, S., Mukherjee, G., Kumar, A., & Majumdar, R. S. (2022). Purification, characterization and application study of bacterial tannase for optimization of gallic acid synthesis from fruit waste. Journal of Scientific & Industrial Research, 81(10), 1029–1036.

Dhiman, S., Mukherjee, G., & Singh, A. K. (2018). Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. International Microbiology, 21(4), 175–195.

Donner, M., Verniquet, A., Broeze, J., Kayser, K., & De Vries, H. (2021). Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resources, Conservation and Recycling, 165, 105236.

El-Maghraby, A., El-Kady, M. F. M., Taha, N. A., El-Hamied, M. A. A., & Hung, Y.-T. (2014). Beneficial Reuse of Waste Products. In Handbook of Environment and Waste Management (pp. 425–489). WORLD SCIENTIFIC.

El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnology Reports, 29, e00574.

García Méndez, M. G., Morales Martínez, T. K., Ascacio Valdés, J. A., Chávez González, M. L., Flores Gallegos, A. C., & Sepúlveda, L. (2021). Application of lactic acid bacteria in fermentation processes to obtain tannases using agro-industrial wastes. Fermentation, 7(2), 48.

Govindarajan, R. K., Mathivanan, K., Khanongnuch, C., Srinivasan, R., Unban, K., Charli Deepak, A., Al Farraj, D. A., Mohammed Alarjani, K., & Al Qahtany, F. S. (2021). Tannin acyl-hydrolase production by Bacillus subtilis KMS2-2: Purification, characterization, and cytotoxicity studies. Journal of King Saud University - Science, 33(3), 101359.

Irfan, M., Bakhtawar, J., Sadia, S., Shakir, H. A., Khan, M., & Ali, S. (2020). Utilization of fruit wastes for enzyme production in submerged fermentation. International Journal of Biology and Chemistry, 13(2).

Jana, A., Halder, S. K., Banerjee, A., Paul, T., Pati, B. R., Mondal, K. C., & Das Mohapatra, P. K. (2014). Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: A molecular advancement. Bioresource Technology, 157, 327–340.

Lekshmi, R., Arif Nisha, S., Thirumalai Vasan, P., & Kaleeswaran, B. (2021). A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environmental Research, 201(July), 111625.

Mahmoud, A. E., Fathy, S. A., Rashad, M. M., Ezz, M. K., & Mohammed, A. T. (2018). Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production. International Journal of Biological Macromolecules, 107, 2342–2350.

Mandal, S., & Ghosh, K. (2013). Optimization of tannase production and improvement of nutritional quality of two potential low-priced plant feedstuffs under solid state fermentation by Pichia kudriavzevii isolated from fish gut. Food Biotechnology, 27(1), 86–103.

Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373.

Md Sani, A. N., Mohd Adzahan, N., & Ismail-Fitry, M. R. (2022). Valorization of malaysian tropical fruit seeds: A review of their nutrition, bioactivity, processing and food application. Food Bioscience, 50, 102156.

Meini, M.-R., Cabezudo, I., Galetto, C. S., & Romanini, D. (2021). Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Bioscience, 42, 101168.

Muslim, S. N., Mahammed, A. N., Musafer, H. K., AL_Kadmy, I. M. S., Shafiq, S. A., & Muslim, S. N. (2015). Detection of the optimal conditions for tannase productivity and activity by Erwinia carotovora. Journal of Medical and Bioengineering, 4(3), 198–205.

Osorio, L. L. D. R., Flórez-López, E., & Grande-Tovar, C. D. (2021). The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules, 26(2), 515.

Ostreikova, T. O., Kalinkina, O. V., Bogomolov, N. G., & Chernykh, I. V. (2022). Glycoalkaloids of plants in the family solanaceae (nightshade) as potential drugs. Pharmaceutical Chemistry Journal, 56(7), 948–957.

Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R., & Williamson, A.-M. (2009). Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocolloids, 23(7), 1984–1992.

Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., & Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140(July 2020), 109854.

Saeed, S., Bibi, I., Mehmood, T., Naseer, R., & Bilal, M. (2022). Valorization of locally available waste plant leaves for production of tannase and gallic acid by solid-state fermentation. Biomass Conversion and Biorefinery, 12(9), 3809–3816.

Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118–129.

Silva, L. de O., Garrett, R., Monteiro, M. L. G., Conte-Junior, C. A., & Torres, A. G. (2021). Pomegranate (Punica granatum) peel fractions obtained by supercritical CO2 increase oxidative and colour stability of bluefish (Pomatomus saltatrix) patties treated by UV-C irradiation. Food Chemistry, 362, 130159.

Tejirian, A., & Xu, F. (2011). Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology, 48(3), 239–247.

Thakur, M., Rai, A. K., Mishra, B. B., & Singh, S. P. (2021). Novel insight into valorization of potato peel biomass into type III resistant starch and maltooligosaccharide molecules. Environmental Technology & Innovation, 24, 101827.

The Star. (2021, October). Tackling the Rising Amount of Trash. TheStar.

Torres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez-Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., Alvarez-Pérez, O. B., Picazo, B., Villarreal-Vázquez, M., Ascacio-Valdes, J., & Aguilar, C. N. (2018). Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Frontiers in Sustainable Food Systems, 2, 1–17.

United Nations Environment Programme & International Resource Panel. (2011). Decoupling Natural Resource Use and Environmental Impacts from Economic Growth.

Verma, S., Taube, F., & Malisch, C. S. (2021). Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability, 13(5), 2743.

Wang, F., Ni, H., Cai, H.-N., & Xiao, A.-F. (2013). Tea stalks – a novel agro-residue for the production of tannase under solid state fermentation by Aspergillus niger JMU-TS528. Annals of Microbiology, 63(3), 897–904.

Yao, J., Guo, G. S., Ren, G. H., & Liu, Y. H. (2014). Production, characterization and applications of tannase. Journal of Molecular Catalysis B: Enzymatic, 101, 137–147.

Yusree, F. I. F. M., Peter, A. P., Mohd Nor, M. Z., Show, P. L., & Mokhtar, M. N. (2021). Latest advances in protein-recovery technologies from agricultural waste. Foods, 10(11), 2748.


  • There are currently no refbacks.