The Potential of Bitter Leaf (Vernonia amygdalina) in Herbal Medicine as Anti-Inflammatory Agent

Muammar Fawwaz, Mamat Pratama, Saparuddin Latu, Rita Rahayu, Andi Nurkamilah

Abstract


Abstract

The inflammatory process involves increased vascular permeability, protein denaturation, and membrane alteration. Flavonoids are a class of secondary metabolites with biological and pharmacological activities, including anti-inflammatory. The bitter leaf, Vernonia amygdalina (VA), are used in various alternative medicine in several countries, including Indonesia. Chemical components in VA leaf are polyphenolic compounds, flavonoids, terpenes, and coumarins. The previous study exhibited that the anti-inflammatory activities of plants are closely related to the levels of polyphenols and flavonoids. Therefore, this study aimed to evaluate the anti-inflammatory activity of VA leaf and determine the total flavonoid-phenolic content of VA leaf ethanolic extract. The extraction method used maceration by ethanol as a solvent. The anti-inflammatory activity was measured by protein denaturation inhibition properties. The total flavonoid and phenolic content were determined by colorimetric and Folin-Ciocalteu methods, in which both procedures were measured by UV-Visible spectrophotometry at maximum wavelength. The results showed that VA leaf ethanolic extract has an anti-inflammatory effect with a half inhibition concentration (IC50) of 346.23 μg/mL. The total flavonoid and phenolic content of the ethanolic extract of VA leaves were 25.62 mgQE/g extracts and 21.47 mgGAE/g extract, respectively. Thus, the ethanolic extract of VA leaves can potentially be developed as an anti-inflammatory agent in herbal medicine.

Keywords: anti-inflammatory, flavonoid, gallic acid, phenolic, quercetin

 

Abstrak

Proses inflamasi melibatkan peningkatan permeabilitas vaskular, denaturasi protein, dan perubahan membran. Flavonoid merupakan senyawa metabolit sekunder dengan aktivitas biologis dan farmakologis potensial, termasuk sebagai antiinflamasi. Daun pahit, Vernonia amygdalina (VA), digunakan dalam berbagai pengobatan alternatif di beberapa negara, termasuk Indonesia. Komponen kimia dalam daun VA adalah senyawa polifenol, flavonoid, terpen, dan kumarin. Studi sebelumnya menunjukkan bahwa aktivitas anti-inflamasi tanaman terkait erat dengan kadar polifenol dan flavonoidnya. Oleh karena itu, penelitian ini bertujuan untuk mengevaluasi aktivitas antiinflamasi daun VA dan mengetahui kandungan flavonoid-fenolik total pada ekstrak daun VA. Metode ekstraksi menggunakan maserasi dengan etanol sebagai pelarut. Aktivitas antiinflamasi diukur dengan menggunakan metode penghambatan denaturasi protein. Kandungan total flavonoid dan fenolik ditentukan dengan metode kolorimetri dan Folin-Ciocalteu. Kedua prosedur tersebut diukur pada spektrofotometri UV-Visible pada panjang gelombang maksimum. Hasil penelitian menunjukkan bahwa ekstrak etanol daun VA memiliki efek anti-inflamasi dengan konsentrasi daya hambat 50% (IC50) sebesar 346,23 µg/mL. Kandungan total flavonoid dan fenolik ekstrak etanolik daun VA berturut-turut adalah 25,62 mgQE/g ekstrak dan 21,47 mgGAE/g ekstrak. Dengan demikian, ekstrak etanol daun VA berpotensi untuk dikembangkan sebagai agen anti-inflamasi dalam pengobatan herbal.

Kata kunci: anti-inflamasi, asam galat, fenolik, flavonoid, quercetin


Keywords


anti-inflammatory; flavonoid; gallic acid; phenolic; quercetin

Full Text:

PDF

References


Adedapo, A. A., Aremu, O. J., & Oyagbemi, A. A. (2014). Anti-oxidant, anti-inflammatory and antinociceptive properties of the acetone leaf extract of Vernonia amygdalina in some laboratory animals. Advanced Pharmaceutical Bulletin, 4(2), 591–598.

Adler, M., Mayo, A., Zhou, X., Franklin, R. A., Meizlish, M. L., Medzhitov, R., … Alon, U. (2020). Principles of cell circuits for tissue repair and fibrosis. IScience, 23(2), 100841. https://doi.org/10.1016/j.isci.2020.100841

Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2020). Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. Journal of King Saud University - Science, 32(1), 7–16. https://doi.org/10.1016/j.jksus.2017.08.001

Carmona-Hernandez, J. C., Taborda-Ocampo, G., & González-Correa, C. H. (2021). Folin-ciocalteu reaction alternatives for higher polyphenol quantitation in Colombian passion fruits. International Journal of Food Science, 2021, 1–10. https://doi.org/10.1155/2021/8871301

Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., … Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208

Cho, S.-Y., Kim, H.-W., Lee, M.-K., Kim, H.-J., Kim, J.-B., Choe, J.-S., … Jang, H.-H. (2020). Antioxidant and anti-inflammatory activities in relation to the flavonoids composition of pepper (Capsicum annuum L.). Antioxidants, 9(10), 986. https://doi.org/10.3390/antiox9100986

Dharmadeva, S., Galgamuwa, L., Prasadinie, C., & Kumarasinghe, N. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU (An International Quarterly Journal of Research in Ayurveda), 39(4), 239. https://doi.org/10.4103/ayu.AYU_27_18

Fawwaz, M., Pratama, M., Hasrawati, A., Widiastuti, H., & Abidin, Z. (2020). Total carotenoids, antioxidant and anticancer effect of Penaeus monodon shells extract. Biointerface Research in Applied Chemistry, 11(4), 11293–11302. https://doi.org/10.33263/BRIAC114.1129311302

Gunathilake, K., Ranaweera, K., & Rupasinghe, H. (2018). In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 6(4), 107. https://doi.org/10.3390/biomedicines6040107

Harahap, U., Dalimunthe, A., Hertiani, T., Muhammad, M., Nasri, & Satria, D. (2021). Antioxidant and antibacterial activities of ethanol extract of Vernonia amygdalina Delile. Leaves. 080011. https://doi.org/10.1063/5.0045447

Jo-Watanabe, A., Okuno, T., & Yokomizo, T. (2019). The role of leukotrienes as potential therapeutic targets in allergic disorders. International Journal of Molecular Sciences, 20(14), 3580. https://doi.org/10.3390/ijms20143580

Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370

Kumar, T., & Jain, V. (2014). Antinociceptive and anti-inflammatory activities of Bridelia retusa methanolic fruit extract in experimental animals. The Scientific World Journal, 2014, 1–12. https://doi.org/10.1155/2014/890151

Martono, Y., Yanuarsih, F. F., Aminu, N. R., & Muninggar, J. (2019). Fractionation and determination of phenolic and flavonoid compound from Moringa oleifera leaves. Journal of Physics: Conference Series, 1307(1), 012014. https://doi.org/10.1088/1742-6596/1307/1/012014

Nayaka, N. M. D. M. W., Fidrianny, I., Sukrasno, Hartati, R., & Singgih, M. (2020). Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee. Journal of Taibah University Medical Sciences, 15(3), 211–217. https://doi.org/10.1016/j.jtumed.2020.04.005

Novika, D. S., Ahsanunnisa, R., & Yani, D. F. (2021). Uji aktivitas antiinflamasi ekstrak etanol daun belimbing wuluh (Averrhoa bilimbi L.) terhadap penghambatan denaturasi protein. Stannum : Jurnal Sains Dan Terapan Kimia, 3(1), 16–22. https://doi.org/10.33019/jstk.v3i1.2117

Onasanwo, S., Oyebanjo, O., Ajayi, A., & Olubori, M. (2017). Mechanisms of action of the anti-nociceptive and anti-inflammatory effects of leaf extract of Vernonia amygdalina. Journal of Intercultural Ethnopharmacology, 6(2), 1. https://doi.org/10.5455/jice.20170330010610

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41

Raoufinia, R., Mota, A., Keyhanvar, N., Safari, F., Shamekhi, S., & Abdolalizadeh, J. (2016). Overview of albumin and its purification methods. Advanced Pharmaceutical Bulletin, 6(4), 495–507. https://doi.org/10.15171/apb.2016.063

Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

Tristantini, D., & Amalia, R. (2019). Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay. 030012. https://doi.org/10.1063/1.5139349

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093

Ullah, H. M. A., Zaman, S., Juhara, F., Akter, L., Tareq, S. M., Masum, E. H., & Bhattacharjee, R. (2014). Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complementary and Alternative Medicine, 14(1), 346. https://doi.org/10.1186/1472-6882-14-346

Wang, W.-T., Liao, S.-F., Wu, Z.-L., Chang, C.-W., & Wu, J.-Y. (2020). Simultaneous study of antioxidant activity, DNA protection and anti-inflammatory effect of Vernonia amygdalina leaves extracts. PLOS ONE, 15(7), e0235717. https://doi.org/10.1371/journal.pone.0235717

Wynn, T. A., & Ramalingam, T. R. (2012). Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine, 18(7), 1028–1040. https://doi.org/10.1038/nm.2807




https://doi.org/10.21776/ub.industria.2023.012.01.4

Refbacks

  • There are currently no refbacks.