Impact of ImarsilTM Adsorption on Aflatoxin M1 (AFM1) Levels in Cow's Milk: Analyzing Hematological Parameters and Histopathological Alterations

Adelodun Lawrence Kolapo, Flora Oluwafemi, Sarafadeen Kareem, Abosede Oyeyemi Fawole, Olufunmilayo Ebunoluwa Adejumo

Abstract


Abstract

The efficacy of ImarsilTM in mitigating the effects of aflatoxin M1 (AFM1) in cow's milk on hematological and histopathological parameters was investigated in this study. Seventy-two albino rats were randomly allocated to four treatment groups A - D in a six-week study. Rats in all groups were fed standard ration. In addition, 2 mL of clean distilled water, 2 mL of milk, 2 mL of AFM1 contaminated milk (456 ng/L), and 2 mL of AFM1 contaminated milk (456 ng/L) treated with ImarsilTM at 2% dosage rate were added to the ration of animals in groups A, B, C, and D respectively. The results of the investigation showed that rats in Group C developed a significant (p<0.05) lower weight. Packed Cell Volume (%), Hemoglobin (g/dL), Red Blood Cell (106/mm3), Mean Corpuscular Volume (fL), Mean Corpuscular Hemoglobin (pg), and Mean Corpuscular Hemoglobin Concentration (g/dL) were not significantly different (p>0.05) among the different groups. In group C, a significant reduction (p<0.05) occurred in the white blood cell (103/mm3) (12.90 - 8.63), and lymphocytes (87.00 - 74.33%) counts while the neutrophils (%) increased from 13.00 to 25.67. In contrast to those in Group C, tissue sections from Group D showed no histological lesions. Therefore, ImarsilTM represents an effective and safe adsorbent for the remediation of AFM1-contaminated milk.

Keywords: adsorbents, aflatoxin M1, cow’s milk, hematological parameters and histopathological changes, ImarsilTM

 

Abstrak

Tingkat keberhasilan ImarsilTM dalam memitigasi efek aflatoksin M1 (AFM1) pada susu sapi terhadap parameter hematologi dan histopatologi diidentifikasi dalam penelitian ini. Tikus albino 72 ekor secara acak dibagi menjadi 4 kelompok perlakuan A, B, C, dan D dalam penelitian 6 minggu. Tikus pada semua kelompok diberi ransum standar. ImarsilTM dengan dosis 2%. dicampurkan pada 2 mL air suling bersih, 2 mL susu, 2 mL susu terkontaminasi AFM1 (456 ng/L), dan 2 mL susu terkontaminasi AFM1 (456 ng/L) kemudian ditambahkan pada ransum masing-masing hewan di kelompok A, B, C, dan D. Hasil penelitian menunjukkan bahwa tikus di Kelompok C mengalami penurunan berat badan yang signifikan (p<0,05). Packed Cell Volume (%), hemoglobin (g/dL), sel darah merah (106/mm3), Mean Corpuscular Volume (fL), Mean Corpuscular Hemoglobin (pg), dan Mean Corpuscular Hemoglobin Concentration (g/dL) tidak berbeda signifikan (p>0,05) antar kelompok yang berbeda. Kelompok C juga menunjukkan penurunan yang signifikan (p<0,05) pada jumlah sel darah putih (103/mm3) (12,90 - 8,63) dan limfosit (87,00 - 74,33%), sedangkan neutrofil (%) meningkat dari 13,00 menjadi 25,67. Berbeda dengan kelompok C, potongan jaringan pada kelompok D tidak menunjukkan lesi histologis. Oleh karena itu, Imarsil™ merupakan adsorben yang efektif dan aman untuk remediasi susu yang terkontaminasi AFM1.

Kata kunci: adsorben, aflatoksin M1, ImarsilTM, parameter hematologi dan perubahan histopatologi, susu sapi

 


Keywords


adsorbents; aflatoxin M1; cow’s milk; hematological parameters and histopathological changes; ImarsilTM; adsorben; aflatoksin M1; ImarsilTM; parameter hematologi dan perubahan histopatologi; susu sapi

Full Text:

PDF

References


Akpan, I., & Kareem, S. O. (2002). Imarsil and Process of Preparation (Patent No. No RP14784).

Alshannaq, A., & Yu, J.-H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 14(6), 632. https://doi.org/10.3390/ijerph14060632

Aringbangba, O. E., Oluwafemi, F., Kolapo, A. L., Adeogun, A. I., & Popoola, T. O. S. (2021). Elimination of aflatoxins from two selected Nigerian vegetable oils using magnetic chitosan nanoparticles. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 10(1), 1–11. https://doi.org/10.21776/ub.industria.2021.010.01.1

Augustine, C., Khobe, D., Babakiri, Y., Igwebuike, J. U., Joel, I., John, T., & Ibrahim, A. (2020). Blood parameters of wistar albino rats fed processed tropical sickle pod (Senna obtusifolia) leaf meal-based diets. Translational Animal Science, 4(2), 778–782. https://doi.org/10.1093/tas/txaa063

Awuchi, C. G., Ondari, E. N., Nwozo, S., Odongo, G. A., Eseoghene, I. J., Twinomuhwezi, H., Ogbonna, C. U., Upadhyay, A. K., Adeleye, A. O., & Okpala, C. O. R. (2022). Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins, 14(3), 167. https://doi.org/10.3390/toxins14030167

Balina, A., Kebede, A., & Tamiru, Y. (2018). Review on aflatoxin and its impacts on livestock. JOJ Sciences, 1(3), 49–55. https://doi.org/10.19080/JOJS.2018.01.555564

Benkerroum, N. (2020). Chronic and acute toxicities of aflatoxins: Mechanisms of action. International Journal of Environmental Research and Public Health, 17(2), 423. https://doi.org/10.3390/ijerph17020423

Bublitz, M. G., & Peracchio, L. A. (2015). Applying industry practices to promote healthy foods: An exploration of positive marketing outcomes. Journal of Business Research, 68(12), 2484–2493. https://doi.org/10.1016/j.jbusres.2015.06.035

Comi, G., Cook, S., Giovannoni, G., Rieckmann, P., Sørensen, P. S., Vermersch, P., Galazka, A., Nolting, A., Hicking, C., & Dangond, F. (2019). Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Multiple Sclerosis and Related Disorders, 29, 168–174. https://doi.org/10.1016/j.msard.2019.01.038

Dale, D. C. (2023). Lymphocytopenia. https://www.msdmanuals.com/home/blood-disorders/white-blood-cell-disorders/lymphocytopenia

Delwatta, S. L., Gunatilake, M., Baumans, V., Seneviratne, M. D., Dissanayaka, M. L. B., Batagoda, S. S., Udagedara, A. H., & Walpola, P. B. (2018). Reference values for selected hematological, biochemical and physiological parameters of Sprague‐Dawley rats at the Animal House, Faculty of Medicine, University of Colombo, Sri Lanka. Animal Models and Experimental Medicine, 1(4), 250–254. https://doi.org/10.1002/ame2.12041

Dhakal, A., Hashmi, M. F., & Sbar, E. (2023). Aflatoxin Toxicity. StatPearls Publishing LLC.

Filho, S. T. S., Junqueira, O. M., Laurentiz, A. C. de, Filardi, R. da S., Rubio, M. da S., Duarte, K. F., & Laurentiz, R. da S. de. (2016). Effects of mycotoxin adsorbents in aflatoxin B 1 - and fumonisin B 1 -contaminated broiler diet on performance and blood metabolite. Revista Brasileira de Zootecnia, 45(5), 250–256. https://doi.org/10.1590/S1806-92902016000500007

Gonçalves, B., Henck, J., Uliana, R., Kamimura, E., Oliveira, C., & Corassin, C. (2019). The use of microbiological methods to reduce aflatoxin M1 in cheese. Access Microbiology, 1(1A). https://doi.org/10.1099/acmi.ac2019.po0165

Hamada, M. M., A., A.-K. S. M., & S., A.-O. M. T. (2019). Study of the cytotoxic effects of aflatoxin on hematopoietic stem cells. Research Journal of Biotechnology, 14(1), 57–63.

James, A. S., Ugwor, E. I., Adebiyi, V. A., Ezenandu, E. O., & Ugbaja, V. C. (2022). Aflatoxin and Disruption of Energy Metabolism. In Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. IntechOpen. https://doi.org/10.5772/intechopen.97042

Kanegasaki, S., Yamashita, T., & Tsuchiya, T. (2019). Reduced number of lymphocytes by x-ray irradiation: A problem in a combination therapy trial that elicits the abscopal effect in preclinical studies using electron beam irradiation. Cureus, 11(2). https://doi.org/10.7759/cureus.4142

Kemboi, D. C., Antonissen, G., Ochieng, P. E., Croubels, S., Okoth, S., Kangethe, E. K., Faas, J., Lindahl, J. F., & Gathumbi, J. K. (2020). A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in Sub-Saharan Africa. Toxins, 12(4), 222. https://doi.org/10.3390/toxins12040222

Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 7(2170). https://doi.org/10.3389/fmicb.2016.02170

Lakkawar, A. W., Narayanaswamy, H. D., & Satyanarayana, M. L. (2017). Study on efficacy of diatomaceous earth to ameliorate aflatoxin induced patho-morphological changes in liver and intestines of broiler chicken. International Journal of Livestock Research, 7(8), 71–84. https://doi.org/10.5455/ijlr.20170520051257

Mgbeahuruike, A. C., Agina, O. A., Anyanwu, M. U., Emejuo, N. T., Ekere, S. O., Ugwu, P. C., Uju, C. N., & Andong, F. A. (2023). Microbial contamination of poultry feed and the effects on birds’ performance. Animal Research International, 20(1), 4834 – 4861.

Mgbeahuruike, A. C., Ejioffor, T. E., Christian, O. C., Shoyinka, V. C., Karlsson, M., & Nordkvist, E. (2018). Detoxification of aflatoxin-contaminated poultry feeds by 3 adsorbents, bentonite, activated charcoal, and fuller’s earth. Journal of Applied Poultry Research, 27(4), 461–471. https://doi.org/10.3382/japr/pfy054

Mmongoyo, J. A., Wu, F., Linz, J. E., Nair, M. G., Mugula, J. K., Tempelman, R. J., & Strasburg, G. M. (2017). Aflatoxin levels in sunflower seeds and cakes collected from micro- and small-scale sunflower oil processors in Tanzania. PLOS ONE, 12(4), e0175801. https://doi.org/10.1371/journal.pone.0175801

Mohamed, S. R., El-Desouky, T. A., Hussein, A. M. S., Mohamed, S. S., & Naguib, K. M. (2016). Modified rice straw as adsorbent material to remove aflatoxin B1 from aqueous media and as a fiber source in fino bread. Journal of Toxicology, 2016, 1–10. https://doi.org/10.1155/2016/6869582

National Research Council. (2011). Guide for the Care and Use of Laboratory Animals (8th ed.). National Academies Press. https://doi.org/10.17226/12910

Oluwafemi, F., Badmos, A., Kolapo, A., Kareem, S., & Ademuyiwa, O. (2014). Comparative efficacies of imarsil and activated charcoal in reducing aflatoxin M1 in cows’ milk. Global Journal of Science Frontier Research, 14(10), 1–9.

Oluwafemi, F., Badmos, A. O., Kareem, S. O., Ademuyiwa, O., & Kolapo, A. L. (2014). Survey of aflatoxin M1 in cows’ milk from free-grazing cows in Abeokuta, Nigeria. Mycotoxin Research, 30(4), 207–211. https://doi.org/10.1007/s12550-014-0204-4

Omar, S. S. (2016). Aflatoxin M1 levels in raw milk, pasteurized milk and infant formula. Italian Journal of Food Safety, 5(3), 158–160. https://doi.org/10.4081/ijfs.2016.5788

Rasheed, U., Ain, Q. U., Yaseen, M., Santra, S., Yao, X., & Liu, B. (2020). Assessing the aflatoxins mitigation efficacy of blueberry pomace biosorbent in buffer, gastrointestinal fluids and model wine. Toxins, 12(7), 466. https://doi.org/10.3390/toxins12070466

Rumbold, P., McCullogh, N., Boldon, R., Haskell-Ramsay, C., James, L., Stevenson, E., & Green, B. (2022). The potential nutrition-, physical- and health-related benefits of cow’s milk for primary-school-aged children. Nutrition Research Reviews, 35(1), 50–69. https://doi.org/10.1017/S095442242100007X

Sarker, M. T., Wan, X. L., Yang, H. M., & Wang, Z. Y. (2023). AflatoxinB 1 (AFB 1 ) and its toxic effect on the broilers intestine: A review. Veterinary Medicine and Science, 9(4), 1646–1655. https://doi.org/10.1002/vms3.1169

Sarma, U. P., Bhetaria, P. J., Devi, P., & Varma, A. (2017). Aflatoxins: Implications on health. Indian Journal of Clinical Biochemistry, 32(2), 124–133. https://doi.org/10.1007/s12291-017-0649-2

Senerwa, D. M., Mtimet, N., Sirma, A. J., Nzuma, J., Kang’ethe, E. K., Lindahl, J. F., & Grace, D. (2016). Direct market costs of aflatoxins in Kenyan dairy value chain. In Agriculture, Nutrition and Health (ANH) Academy Week. University of Nairobi.

Spiezia, A. L., Cerbone, V., Molinari, E. A., Capasso, N., Lanzillo, R., Carotenuto, A., Petracca, M., Novarella, F., Covelli, B., Scalia, G., Brescia Morra, V., & Moccia, M. (2022). Changes in lymphocytes, neutrophils and immunoglobulins in year-1 cladribine treatment in multiple sclerosis. Multiple Sclerosis and Related Disorders, 57, 103431. https://doi.org/10.1016/j.msard.2021.103431

Turna, N. S., & Wu, F. (2021). Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends in Food Science & Technology, 110, 183–192. https://doi.org/10.1016/j.tifs.2021.01.093

Valchev, I., Kanakov, D., Hristov, T. S., Lazarov, L., Binev, R., Grozeva, N., & Nikolov, Y. (2014). Investigations on the liver function of broiler chickens with experimental aflatoxicosis. Bulgarian Journal of Veterinary Medicine, 17(4), 302–313.

Valchev, I., Zarkov, I., Grozeva, N., & Nikolov, Y. (2014). Effects of aflatoxin В1 on production traits, humoral immune response and immunocompetent organs in broiler chickens. Agricultural Science and Technology, 6(3), 256–262.

Wikivet. (2012). Rat Haematology. Wikivet. https://en.wikivet.net/Rat_Haematology

Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public health impacts of foodborne mycotoxins. Annual Review of Food Science and Technology, 5(1), 351–372. https://doi.org/10.1146/annurev-food-030713-092431

Yaman, T., Yener, Z., & Celik, I. (2016). Histopathological and biochemical investigations of protective role of honey in rats with experimental aflatoxicosis. BMC Complementary and Alternative Medicine, 16(1), 232. https://doi.org/10.1186/s12906-016-1217-7

Yusuf, M., & Obaghwarhievwo, A. J. (2021). Fura da nono drink and its implications in the treatment of malnutrition in Bauchi Metropolis of Bauchi State. Biomedical Journal of Scientific & Technical Research, 37(1), 29047–29053. https://doi.org/10.26717/BJSTR.2021.37.005938

Zahoor, M., & Ali Khan, F. (2018). Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arabian Journal of Chemistry, 11(5), 729–738. https://doi.org/10.1016/j.arabjc.2014.08.025




https://doi.org/10.21776/ub.industria.2023.012.02.7

Refbacks

  • There are currently no refbacks.