Pengaruh Tekanan Suhu dan Penambahan Suplemen Metal Ion pada Fermentasi Etanol oleh Zymomonas mobilis

Sakunda Anggarini, Maimunah Hindun Pulungan, Wignyanto Wignyanto, Nur Hidayat, Irnia Nurika, Azimmatul Ihwah

Abstract


Abstrak

Penelitian ini bertujuan mengetahui pengaruh suhu fermentasi dan penambahan suplemen metal ion terhadap pertumbuhan Z.mobilis serta mengukur kemampuannya dalam menghasilkan etanol. Penelitian ini dilaksanakan dengan menggunakan Rancangan Acak Kelompok dengan dua faktor, yaitu suhu fermentasi (30, 34, dan 38 °C) dan penambahan ion logam dari senyawa garam (Kalium dikromat, Magnesium klorida, dan Asam borat). Hasil penelitian menunjukkan bahwa suhu saat fermentasi dan penambahan suplemen ion logam memberikan pengaruh signifikan terhadap pertumbuhan sel, total gula reduksi, dan kadar etanol. Pertumbuhan sel tertinggi sebesar 0,753 NTU dengan penambahan kalium dikromat pada suhu fermentasi 38 °C. Total gula reduksi terendah sebesar 789,97 mg/ml dengan penambahan Asam borat pada suhu fermentasi 34 °C. Kadar etanol tertinggi sebesar 2,234% dengan penambahan kalim dikromat pada suhu fermentasi 34 °C.

Kata kunci: gula reduksi, ion logam, kadar etanol, tekanan suhu tinggi, Zymomonas mobilis

 

Abstract

This study was aimed to find out the effect of fermentation temperature and metal ion supplement addition towards the growth of Z.mobilis as well as to measure its capability in producing ethanol. This research was conducted by using the randomized block design with two factors namely fermentation temperature (30,34,38 oC) and metal ion supplement addition of Potassium dichromate, Magnesium chloride and Boric acid. The result showed that temperature stress and metal ion supplement addition had significant influence on cell growth, total reducing sugar, and the amount of ethanol production. The highest cell growth was 0,753 NTU with Potassium dichromate addition at fermentation temperature of 38 oC. the lowest total reducing sugar was 789.97 mg/ml with Boric acid addition at fermentation temperature of 34 oC. the highest ethanol production was 2.234% with Potassium dichromate addition at fermentation temperature of 34 oC.

Keywords: reduction sugar, metals ion, amount of ethanol, temperature stress, Zymomonas mobilis


Keywords


reduction sugar; metals ion; amount of ethanol; temperature stress; Zymomonas mobilis

Full Text:

PDF

References


Akira,M, Luciano, F, Laonarndo,F, Vittorio,G, Giacammo,R, (1997). Object Representation in the Ventral Premotor Cortex (Area F5) of the Monkey. Journal of Neurophysiology. 78(4): 2226-2230.

An, H., Scopes, R.K., Rodriguez, M., Keshav, K.F and Ingram, L.O. (1991). Gel Electrophoresis Analysis of Zymomonas mobilis Glycolytic and Fermentative Enzymes: Identification of Alcohol Dehydrogenase II as A Stress Protein. Bacteriology. 173(19): 5975-5982.

AOAC Association of Official Analytical Chemists. (2000). Official Methods of Analysis 17th ed. USA: AOAC International.

Barbosa, M. de F.S., Yomano, L.P. and Ingram, l.O. (1994). Cloning, Sequencing and Expression of Stress Gene from the Ethanol-Producing Bacterium Zymomonas mobilis: The Groesl Operon. Gene. 148(1): 51–57.

Carey, V.C and Ingram, L. O. (1983). Lipid composition of Zymomonas mobilis: Effects of Ethanol and Glucose. Bacteriology. 154(3): 1291-1300.

Chen, X.Z., Zhou, L., Kangming, T., Kumar, A., Singh, S., Prior B.A., and Wang Z.X., (2013). Metabolic Engineering of Escherichia Coli: A Sustainable Industrial Platform for Bio-Based Chemical Production. Biotechnology Advances. 31(8): 1200-1223.

Crane, E. (1975). Honey: Wines from the Fermentation of Honey. London: Heneimann.

Doelle, H., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993). Zymomonas mobilis: science and industrial application. Critical Reviews in Biotechnology. 13(1): 57–98.

Dombek, K.M. and Ingram, L.O. (1986). Magnesium Limitation and Its Role in Apparent Toxicity of Ethanol during Yeast Fermentation. Applied and Environmental Microbiology. 52(5): 975-981.

Fakruddin, M., Quayum, M.A., Ahmed, M.M., and Choudhury, N. (2012). Analysis of Key Factors Affecting Ethanol Production by Saccharomyces cerevisiae IFST-072011. Biotechnology. 11(4): 248-252.

Graeme, M.W. and John, H.D. (1980). Magnesium Ions and the Control of the Cell Cycle in Yeast. Cell Science. 42: 329-356.

Gray, K.A., Zhao, L., and Emptage, M. (2006). Bioethanol. Current Opinion on Chemical Biology. 10(2): 141-146.

Hong K-K, and Nielsen, J. (2012). Metabolic Engineering of Saccharomyces Cerevisiae: A Key Cell Factory for Future Biorefineries. Cellular and Molecular Life Sciences. 69(16): 2671-2690.

Khongsay, N., Laopaiboon, L., and Laopaiboon P. (2010). Growth and Batch Fermentation of Saccharomyces Cerevisiae on Sweet Sorghum Stem Juice under Normal and Very High Gravity Conditions. Biotechnology. 9(1): 9-16.

Lin, Y., and Tanaka, S. (2006). Ethanol Fermentation from Biomass Resources: Current State and Prospects. Applied Microbiology and Biotechnology. 69(6): 627–642.

Matsushita, K., Azuma, Y., Kosaka, T., Toshiharu, Y., Hoshida, H., Akada, R. and Yamada, M. (2016). Genomyc analysis of thermotolerant microorganisms used for high-temperature fermentations. Bioscience, Biotechnology and Biochemistry. 80 (4): 655-668

Michel G., Azoulay T. and Starka J. (1985). Ethanol Effect on the Membrane Protein Pattern of Zymomonas mobilis. Microbiologie. 136: 173-179

Michel, G.P.F. and Starka. J. (1987). Preferential Synthesis of Stress Protein in Stationary Zymomonas mobilis Cells. FEMS Microbiology Letters. 43: 361-365.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Analytical Chemistry. 31(3): 426-428.

Moreau, R.A., Powell, M.J., Fett and Whitaker, B.D. (1997). The Effect of Ethanol and Oxygen on the Growth Of Zymomonas mobilis and the Levels of Hopanoids and Other Membrane Lipids. Current Microbiology. 35(2): 124-128.

Murata, M., Nitiyon, S., Lertwattanasakul, N., Sootsuwan, K., Kosaka, T., Thanonkeo, P., Limtong, S. and Yamada, M. (2015). High-temperature Fermentation Technology for Low-cost Bioethanol. Journal of the Japan Institute of Energy. 94: 1154-1162.

Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S. (2008). High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU 3–1042. Applied Environmental Microbiology. 74(24): 7514-7521.

Nielsen, J., Larsson, C., Van Maris, A., and Pronk, J. (2013). Metabolic Engineering of Yeast for Production of Fuels and Chemicals. Current Opinion in Biotechnology. 24(3): 398-404.

Osman, Y.A. and Ingram, L. O. (1985). Mechanism of Ethanol Inhibition of Fermentation in Zymomonas mobilis CP4. Bacteriology. 164(1): 173-180.

Panesar, P.S., Marwaha, S.S., and Kennedy, J.F. (2006). Zymomonas mobilis: an Alternative Ethanol Producer. Chemical Technology and Biotechnology. 81(4). Pp. 623–635.

Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, Limtong, S., Kosaka, T., Yamada, M. (2011). Growth and Ethanol Fermentation Ability on Hexose and Pentose Sugars and Glucose Effect Under Various Conditions in Thermotolerant Yeast Kluyveromyces Marxianus. Applied Environmental Microbiology. 90(4): 1573-1586.

Rogers, P.L., Jeon, Y.J., Lee, K.J, and Lawford, H.G. (2007). Zymomonas mobilis for Fuel Ethanol and Higher Value Products. Advances in Biochemical Engineering/Biotechnology. 108: 263–288.

Sahm, H., Bringer-Meyer, S., and Sprenger, G. (2006). The Genus Zymomonas. Prokaryotes. 5: 201–221.

Seo, J.S., Chong, H., Park, H.S., Yoon K.O., Jung C., Kim, J.J., Hong, J.H., Kim, H., Kim, J.H., Kil, J.I., Park, C.J., Oh, H.M., Lee, J.S., Jin, S.J, Um, H.W., Lee H.J., Oh. S.J., Kim J.Y., Kang H.L., Lee, S.Y., Lee, K.J., Kang H.S. (2005). The Genome Sequence of the Ethanologenic Bacterium Zymomonas mobilis ZM4. Nature Biotechnology. 23(1): 63–68.

Sims, R.R.H., Mabree, W., Saddler, J.N., and Taylor, M. (2010). An Overview of Second Generation Biofuels Technologies. Bioresource Technology. 101: 1570-1580.

Somda, M.K., Savadogo, a., Barro, N., Thonart, P., and Traore, A.S. (2011). Effect of Mineral Salt in Fermentation Process using Mango Residues as Carbon Source for Bioethanol Production. Asian Journal of Industrial Engineering. 3(1): 29-38.

Sue, C. and Horst Doelle, W. (1981). Nutritional Effect on the Kinetics of Ethanol Production from Glucose by Zymomonas mobilis. Applied Microbiology and Biotechnology. 11(2): 116-119.

Swings, J., and De Ley, J. (1977). The Biology of Zymomonas. Bacteriological Reviews. 41(1): 1-46.

Thanonkeo, P., Laopaiboon, P., Sootsuwan, K. and Yamada. M. (2007). Magnesium Ions Improve Growth and Ethanol Production of Zymomonas mobilis under Heat or Ethanol Stress. Biotechnology. 6(1): 112-129.




https://doi.org/10.21776/ub.industria.2016.005.03.2

Refbacks

  • There are currently no refbacks.