Dynamic Rheological, Thermal, and Structural Properties of Starch from Modified Cassava Flour (MOCAF) with Two Cultivars of Cassava

Nurud Diniyah, Miyuki Iguchi, Mai Nanto, Tomoyuki Yoshino, Achmad Subagio

Abstract


Abstract

The objectives of this study were to investigate alteration in the starch properties of modified cassava flour from two different local cassava cultivars from Indonesia at different fermentation times, provide structural information for starch molecules, and characterize the dynamic rheological and thermal properties. Resistant starch, non-resistant starch, and total starch levels in the cassava cultivars were also evaluated. Changes in the starch properties of Cimanggu and Kaspro (local cultivars of cassavas from Indonesia) were compared following different fermentation times (0, 12, and 24 hours). The properties of starch from modified cassava flour were influenced by the fermentation time, although both cassava varieties showed the same general characteristics. Their levels of resistant starch, non-resistant starch, and total starch were 33.28% to 51.74%, 20.51% to 23.72%, and 53.81% to 72.25% (g/100 g dry sample), respectively. The starch granules for the non-fermented samples were oval, polygonal, and round shapes; however, during fermentation, the starch granules became more porous and developed cracks of various sizes. The starches of both varieties showed an onset temperature between 67.85 and 70.17 °C, a peak temperature of 69.33 °C to 71.62 °C, and an end set temperature of 68.62 °C to 70.95 °C, with enthalpy values ranging from 1.25 mJ/mg to 1.74 mJ/mg.

Keywords: cassava, cultivar, dynamic rheological, fermentation, modified cassava starch

 

Abstrak

Tujuan dari penelitian ini adalah untuk mengetahui perubahan sifat pati tepung singkong termodifikasi dari dua varietas singkong lokal Indonesia dengan lama fermentasi yang berbeda, memberikan informasi struktur molekul pati, dan melakukan karakterisasi sifat rheologi dan termal dinamis dari pati. pati resisten, pati non-resisten, dan kadar pati total dalam varietas singkong. Perubahan sifat pati Cimanggu dan Kaspro (varietas singkong lokal Indonesia) dibandingkan setelah dilakukan fermentasi pada waktu yang berbeda (0, 12, dan 24 jam). Sifat pati dari tepung singkong termodifikasi dipengaruhi oleh lama fermentasi, meskipun kedua varietas singkong menunjukkan karakteristik umum yang sama. Kadar pati resisten, pati non-resisten, dan total pati masing-masing 33,28% – 51,74%, 20,51% – 23,72%, dan 53,81% – 72,25% (g/100 g sampel kering). Granula pati dari sampel non-fermentasi berbentuk oval, poligonal, dan bulat. Namun, selama fermentasi, granula pati menjadi lebih berpori dan mengembang dengan terdapat retakan pada berbagai ukuran. Pati dari dua varietas menunjukkan onset temperature (suhu awal) antara 67,85 °C dan 70,17 °C, suhu puncak 69,33 °C – 71,62 °C, dan suhu akhir 68,62 °C – 70,95 °C, dengan nilai entalpi berkisar dari 1,25 mJ/mg - 1.74 mJ/mg.

Kata Kunci: dinamik rheologi, fermentasi, pati singkong termodifikasi, singkong, varietas

 


Keywords


cassava; cultivar; dynamic rheological; fermentation; modified cassava starch; dinamik rheologi; fermentasi; pati singkong termodifikasi; singkong; varietas

Full Text:

PDF

References


Adiandri, R. S., & Hidayah, N. (2019). Effect of fermentation using Lactobacillus casei on the physicochemical and functional properties of sorghum flour. IOP Conference Series: Earth and Environmental Science, 309(1), 012025. https://doi.org/10.1088/1755-1315/309/1/012025

Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour, rice flour and corn flour. IOP Conference Series: Earth and Environmental Science, 101, 012021. https://doi.org/10.1088/1755-1315/101/1/012021

Agnes, A. C., Felix, E. C., & Ugochukwu, N. T. (2017). Morphology, rheology and functional properties of starch from cassava, sweet potato and cocoyam. Asian Journal of Biology, 3(3), 1–13. https://doi.org/10.9734/AJOB/2017/34587

Ali, A., Wani, T. A., Wani, I. A., & Masoodi, F. A. (2016). Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences, 15(1), 75–82. https://doi.org/10.1016/j.jssas.2014.04.002

Aprianita, A., Purwandari, U., Watson, B., & Vasiljevic, T. (2009). Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. International Food Research Journal, 16, 507–520.

Bavaneethan, Y., Vasantharuba, S., Balakumar, S., & Thayananthan, K. (2015). Effect of different processing time on resistant starch content of selected tubers. World Journal of Agricultural Sciences, 11(4), 244–246.

Bet, C. D., Cordoba, L. P., Ribeiro, L. S., & Schnitzler, E. (2017). Effect of acid modification on the thermal, morphological and pasting properties of starch from mango kernel (Mangifera indica L.) of Palmer variety. International Food Research Journal, 24(5), 1967–1974.

Chisenga, S. M., Workneh, T. S., Bultosa, G., & Laing, M. (2019). Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia. AIMS Agriculture and Food, 4(4), 939–966. https://doi.org/10.3934/agrfood.2019.4.939

Cornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., & Cinco-Moroyoqui, F. J. (2018). The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16(1), 1003–1017. https://doi.org/10.1080/19476337.2018.1518343

de Oliveira, C. S., Andrade, M. M. P., Colman, T. A. D., da Costa, F. J. O. G., & Schnitzler, E. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. Journal of Thermal Analysis and Calorimetry, 115(1), 13–18. https://doi.org/10.1007/s10973-013-3307-9

Dewi, S. S., Hastutik, S. T., & Setiawan, C. K. (2020). Mocaf characteristic test of different varieties of cassava in Gunung Kidul. IOP Conference Series: Earth and Environmental Science, 458(1), 012009. https://doi.org/10.1088/1755-1315/458/1/012009

Di Rosa, C., De Arcangelis, E., Vitelli, V., Crucillà, S., Angelicola, M., Trivisonno, M. C., Sestili, F., Blasi, E., Cicatiello, C., Lafiandra, D., Masci, S., Messia, M. C., De Gara, L., Marconi, E., & Khazrai, Y. M. (2023). Effect of three bakery products formulated with high-amylose wheat flour on post-prandial glycaemia in healthy volunteers. Foods, 12(2), 319. https://doi.org/10.3390/foods12020319

Diniyah, N., Yuwana, N., Maryanto, Purnomo, B. H., & Subagio, A. (2018). Karakterisasi sera mocaf (modified cassava flour) dari ubikayu varietas manis dan pahit. Jurnal Penelitian Pascapanen Pertanian, 15(3), 131–139. https://doi.org/10.21082/jpasca.v15n3.2018.114-122

Firdaus, J., Sulistyani, E., & Subagio, A. (2017). Resistant starch modified cassava flour (mocaf) improves insulin resistance. Asian Journal of Clinical Nutrition, 10(1), 32–36. https://doi.org/10.3923/ajcn.2018.32.36

Food and Agriculture Organization of the United Nations Statistics Database. (2013). Food and agricultural commodities production.

Fuentes-Zaragoza, E., Sánchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., Fernández-López, J., & Pérez-Alvarez, J. A. (2011). Resistant starch as prebiotic: A review. Starch - Stärke, 63(7), 406–415. https://doi.org/10.1002/star.201000099

Ge, Y., Wang, W., Shen, M., Kang, Z., Wang, J., Quan, Z., Xiao, J., Zhao, S., Liu, D., & Cao, L. (2020). Effect of natural fermentation of sorghum on resistant starch molecular structure and fermentation property. Journal of Chemistry, 2020, 1–11. https://doi.org/10.1155/2020/9835214

Heo, H., Lee, Y.-K., & Chang, Y. H. (2017). Rheaological, pasting, and structural properties of potato starch by cross-linking. International Journal of Food Properties, 20(2), 1–13. https://doi.org/10.1080/10942912.2017.1368549

Hong, J., Guo, W., Chen, P., Liu, C., Wei, J., Zheng, X., & Saeed Omer, S. H. (2022). Effects of bifidobacteria fermentation on physico-chemical, thermal and structural properties of wheat starch. Foods, 11(17), 2585. https://doi.org/10.3390/foods11172585

Jonathan, N., Dominic, S., Rob, C., Erik, D., & Lava, Y. (2019). Cassava value chains and livelihoods in South-East Asia. 148 ACIAR Proceeding.

Kittipongpatana, O. S., & Kittipongpatana, N. (2015). Resistant starch contents of native and heat-moisture treated jackfruit seed starch. The Scientific World Journal, 2015, 1–10. https://doi.org/10.1155/2015/519854

Li, Y., Su, X., Shi, F., Wang, L., & Chen, Z. (2017). High-temperature air­-fluidization-induced changes in the starch texture, rheological properties, and digestibility of germinated brown rice. Starch - Stärke, 69(9–10), 1600328. https://doi.org/10.1002/star.201600328

Liu, Y., Jiang, F., Du, C., Li, M., Leng, Z., Yu, X., & Du, S.-K. (2022). Optimization of corn resistant starch preparation by dual enzymatic modification using response surface methodology and its physicochemical characterization. Foods, 11(15), 2223. https://doi.org/10.3390/foods11152223

Moscicki, L., Mitrus, M., Wojtowicz, A., Oniszczuk, T., & Rejak, A. (2013). Extrusion-Cooking of Starch. In Advances in Agrophysical Research. InTech. https://doi.org/10.5772/52323

Mtunguja, M. K., Thitisaksakul, M., Muzanila, Y. C., Wansuksri, R., Piyachomkwan, K., Laswai, H. S., Chen, G., Shoemaker, C. F., Sinha, N., & Beckles, D. M. (2016). Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava ( Manihot esculenta Crantz.) landraces. Starch - Stärke, 68(5–6), 514–527. https://doi.org/10.1002/star.201500179

Mwizerwa, H., Ooko Abong, G., Okoth, M., Ongol, M., Onyango, C., & Thavarajah, P. (2017). Effect of resistant cassava starch on quality parameters and sensory attributes of yoghurt. Current Research in Nutrition and Food Science Journal, 5(3), 353–367. https://doi.org/10.12944/CRNFSJ.5.3.21

Nasrin, T. A. A., & Anal, A. K. (2014). Resistant starch: properties, preparations and applications in functional foods. In Functional Foods and Dietary Supplements (pp. 227–253). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118227800.ch9

Novelina, Aisman, & Ramadhani, A. (2023). The comparative effect of mocaf (modified cassava flour) and corn (Zea mays L.) flour on the characteristics of chiffon cake. IOP Conference Series: Earth and Environmental Science, 1182(1), 012052. https://doi.org/10.1088/1755-1315/1182/1/012052

Nugraheni, M., Handayani, T. H. W., & Utama, A. (2015). Pengembangan mocaf (modified cassava flour) untuk peningkatan diversifikasi pangan dan ekonomi pasca erupsi merapi. INOTEKS : Jurnal Inovasi Ilmu Pengetahuan, Teknologi, Dan Seni, 19(1), 52–69.

Padalino, L., Conte, A., & Del Nobile, M. (2016). Overview on the general approaches to improve gluten-free pasta and bread. Foods, 5(4), 87. https://doi.org/10.3390/foods5040087

Paredes, J., Cortizo-Lacalle, D., Imaz, A. M., Aldazabal, J., & Vila, M. (2022). Application of texture analysis methods for the characterization of cultured meat. Scientific Reports, 12(1), 3898. https://doi.org/10.1038/s41598-022-07785-1

Patel, B. K., Waniska, R. D., & Seetharaman, K. (2005). Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 42(2), 173–184. https://doi.org/10.1016/j.jcs.2005.04.007

Peprah, B. B., Parkes, E. Y., Harrison, O. A., van Biljon, A., Steiner-Asiedu, M., & Labuschagne, M. T. (2020). Proximate composition, cyanide content, and carotenoid retention after boiling of provitamin a-rich cassava grown in Ghana. Foods, 9(12), 1800. https://doi.org/10.3390/foods9121800

Pereira, J. M., Aquino, A. C. M. de S., Oliveira, D. C. de, Rocha, G., Francisco, A. de, Barreto, P. L. M., & Amante, E. R. (2016). Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules. Ciência Rural, 46(4), 732–738. https://doi.org/10.1590/0103-8478cr20150632

Putri, N. A., Subagio, A., & Diniyah, N. (2022). Pasting properties of mocaf (modified cassava flour) using rapid visco analyzer with variations of pH solution. Food ScienTech Journal, 4(1), 18–27. https://doi.org/10.33512/fsj.v4i1.14441

Schmiele, M., Sehn, G. A. R., Santos, V. da S., Rocha, T. de S., Almeida, E. L., Nabeshima, E. H., Chang, Y. K., & Steel, C. J. (2015). Physicochemical, structural and rheological properties of chestnut (Castanea sativa) starch. American Journal of Food Science and Technology, 3(4), 1–7. https://doi.org/10.12691/ajfst-3-4A-1

Setiarto, R. H. B., Jenie, B. S. L., Faridah, D. N., Saskiawan, I., & Sulistiani. (2018). Effect of lactic acid bacteria fermentation and autoclaving-cooling for resistant starch and prebiotic properties of modified taro flour. International Food Research Journal, 25(4), 1691–1697.

Subagio, A., Taslim, N. A., Chaniago, I. A., Zainuddin, I. M., Diniyah, N., & Nafi’, A. (2022). Standard Operating Procedures (SOP) Production of Modified Cassava Flour (MOCAF). UPT Penerbitan Universitas Jember.

Susilowati, A., Aspiyanto, Melanie, H., Maryati, Y., Lotulung, P. D., Devi, A. F., & Budiari, S. (2021). Alternative use of modified cassava flour (mocaf) as carrier of natural folic acid in infant biscuits for complementary feeding. IOP Conference Series: Materials Science and Engineering, 1011(1), 012031. https://doi.org/10.1088/1757-899X/1011/1/012031

Takeda, Y., Takeda, C., Mizukami, H., & Hanashiro, I. (1999). Structures of large, medium and small starch granules of barley grain. Carbohydrate Polymers, 38(2), 109–114. https://doi.org/10.1016/S0144-8617(98)00105-2

Tang, H., Ando, H., Watanabe, K., Takeda, Y., & Mitsunaga, T. (2001). Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 330(2), 241–248. https://doi.org/10.1016/S0008-6215(00)00292-5

Tang, X., & Liu, J. (2017). A comparative study of partial replacement of wheat flour with whey and soy protein on rheological properties of dough and cookie quality. Journal of Food Quality, 2017, 1–10. https://doi.org/10.1155/2017/2618020

Tarrega, A., & Costell, E. (2006). Effect of composition on the rheological behaviour and sensory properties of semisolid dairy dessert. Food Hydrocolloids, 20(6), 914–922. https://doi.org/10.1016/j.foodhyd.2005.09.006

Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch - Stärke, 67(1–2), 55–68. https://doi.org/10.1002/star.201400188

Xu, T., Huang, W., Liang, J., Zhong, Y., Chen, Q., Jie, F., & Lu, B. (2021). Tuber flours improve intestinal health and modulate gut microbiota composition. Food Chemistry: X, 12, 100145. https://doi.org/10.1016/j.fochx.2021.100145

Zhang, H., Xu, X., & Jin, Z. (2012). Fermentation characteristics of resistant starch from maize prepared by the enzymatic method in vitro. International Journal of Biological Macromolecules, 51(5), 1185–1188. https://doi.org/10.1016/j.ijbiomac.2012.08.031

Zhang, L., Yang, M., Ji, H., & Ma, H. (2014). Some physicochemical properties of starches and their influence on color, texture, and oil content in crusts using a deep-fat-fried model. CyTA - Journal of Food, 12(4), 347–354. https://doi.org/10.1080/19476337.2014.887148

Zong, X., Wen, L., Mou, T., Wang, Y., & Li, L. (2022). Effects of multiple cycles of sorghum starch gelatinization and fermentation on production of Chinese strong flavor Baijiu. Journal of Cereal Science, 108, 103561. https://doi.org/10.1016/j.jcs.2022.103561




https://doi.org/10.21776/ub.industria.2023.012.01.8

Refbacks

  • There are currently no refbacks.