Potentials of Edible Canna (Canna edulis Kerr) Starch for Bioplastic: A Review
Abstract
Abstract
Starch-based bioplastic was more economical and competitive compared to bacteria-based bioplastics (polylactic acid, polybutylene succinate, and polyhydroxyalkanoates) due to the starch variances and the availability in Indonesia, along with the simple techniques that can be applied. This review aimed to describe the potential and opportunities of edible canna starch as an alternative raw material of bioplastics production. Edible canna tuber productivity in Java, Indonesia, with a harvest age of about eight months reaches 30-49.4 tons/ha. It will produce a mature segment 70.2% of the total harvest weight. Edible canna tuber was a carbohydrate source that contains 88.10% starch with an advantage of 68% higher fiber and mineral content than other tubers. Furthermore, canna tuber starch contains amylose proportions of 35.0%. The high amylose content in canna starch is one of the properties that can position its function for developing packaging materials. The gelatinization process of canna starch requires a short time and low energy because of its large granule size (56 μm). A literature review of canna starch as an alternative of bioplastic raw materials needs to be carried out to obtain accurate data and information regarding treatment, use of additional materials, and characteristics of bioplastic products resulting from experimental studies so that they can be further implemented.
Keywords: bioplastics, edible canna, starch
Abstrak
Penggunaan pati sebagai salah satu bahan utama produksi bioplastik bernilai lebih ekonomis dan kompetitif dibandingkan dengan bioplastik berbasis bakteri (polylactic acid, polybutylene succinate, dan polyhydroxyalkanoates) karena variasi dan jumlahnya yang melimpah di Indonesia dan teknologi sederhana yang dapat diaplikasikan. Tujuan kajian literatur ini adalah untuk menggambarkan potensi dan peluang pati ganyong sebagai alternatif bahan baku pembuatan bioplastik. Produktivitas umbi ganyong di Pulau Jawa dengan umur panen sekitar 8 bulan mencapai 30-49,4 ton/ha. Ganyong merupakan sumber karbohidrat yang mengandung 88,10% pati dengan keunggulan berupa 68% kandungan serat dan mineral pada pati yang lebih tinggi dibanding umbi-umbian lain. Pati umbi ganyong juga mengandung amilosa sebanyak 35,0%. Kandungan amilosa yang tinggi pada pati ganyong merupakan salah satu sifat yang berfungsi dalam pengembangan bahan pengemas. Proses gelatinisasi pati ganyong membutuhkan waktu yang sebentar dan energi yang rendah karena ukuran granulnya yang besar (56 m). Kajian pustaka pati ganyong sebagai alternatif bahan baku bioplastik perlu dilakukan untuk mendapatkan keakuratan data dan informasi mengenai perlakuan, penggunaan bahan tambahan, dan karakteristik produk bioplastik yang dihasilkan dari kajian eksperimen agar dapat diimplementasikan lebih lanjut.
Kata kunci: bioplastik, ganyong, pati
Keywords
Full Text:
PDFReferences
Ai, Y., & Jane, J. (2015). Gelatinization and rheological properties of starch. Starch - Stärke, 67(3–4), 213–224. https://doi.org/10.1002/star.201400201
Anggarini, D., Hidayat, N., & Mulyadi, A. F. (2016). Pemanfaatan pati ganyong sebagai bahan baku edible coating dan aplikasinya pada penyimpanan buah apel anna (Malus sylvestris) (Kajian konsentrasi pati ganyong dan gliserol). Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 5(1), 1–8. https://doi.org/10.21776/ub.industria.2016.005.01.1
Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5
Asgar, A., Kusmana, Rahayu, S. T., & Sofiari, E. (2011). Uji kualitas umbi beberapa klon kentang untuk keripik. Jurnal Hortikultura, 21(1), 51–59. https://doi.org/10.21082/jhort.v21n1.2011.p51-59
Damayanti, E., Poeloengasih, C. D., & Warakasih, I. (2017). Komposisi nutrien dan kandungan senyawa bioaktif pati ganyong (Canna edulis Ker.) kultivar lokal Gunungkidul. In Prosiding Seminar Pemberdayaan Masyarakat Melalui Pemanfaatan Bahan Baku Lokal. Gunungkidul: LIPI dan Pemerintah Kabupaten Gunungkidul.
Departemen Kesehatan Republik Indonesia. (1992). Daftar Komposisi Bahan Makanan. Jakarta: Bhratara Karya Aksara.
Direktorat Jenderal Tanaman Pangan. (2017). Petunjuk Teknis Pengelolaan Produksi Aneka Kacang dan Umbi Tahun 2017. Jakarta: Kementerian Pertanian.
European Bioplastics. (2021). Frequently Asked Questions on Bioplastics. Berlin: EUPB.
Gadhave, R. V., Das, A., Mahanwar, P. A., & Gadekar, P. T. (2018). Starch based bio-plastics: The future of sustainable packaging. Open Journal of Polymer Chemistry, 8(2), 21–33. https://doi.org/10.4236/ojpchem.2018.82003
Ginting, E., Widodo, Y., Rahayuningsih, S. A., & Jusuf, M. (2005). Karakteristik pati beberapa varietas ubi jalar. Jurnal Penelitian Pertanian Tanaman Pangan, 24(1), 8–18.
Harsojuwono, B. A., Mulyani, S., & Arnata, I. W. (2019). Characteristics of bio-plastic composites from the modified cassava starch and konjac glucomannan. Journal of Applied Horticulture, 21(1), 13–19. https://doi.org/10.37855/jah.2019.v21i01.02
Hasanah, F., & Hasrini, R. F. (2018). Pemanfataan ganyong (Canna edulis Kerr) sebagai bahan baku sohun dan analisis kualitasnya. Warta IHP (Warta Industri Hasil Pertanian), 35(2), 99–105.
Hung, P. Van, & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chemistry, 109(2), 325–331. https://doi.org/10.1016/j.foodchem.2007.12.060
Imai, K. (2008). Edible Canna: A prospective plant resource from South America. Japanese Journal of Plant Science, 2(2), 46–3.
Imran, Y. L., Hutomo, G. S., & Rahim, A. (2014). Sintesis dan karakterisasi bioplastik berbasis pati sagu (Metroxylon sp). Agrotekbis : E-Jurnal Ilmu Pertanian, 2(1), 38–40.
Jabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. Cogent Food & Agriculture, 1(1), 1117749. https://doi.org/10.1080/23311932.2015.1117749
Jading, A., Tethool, E., Payung, P., & Gultom, S. (2011). Karakteristik fisikokimia pati sagu hasil pengeringan secara fluidisasi menggunakan alat pengering cross flow fluidized bed bertenaga surya dan biomassa. Reaktor, 13(3), 155–164. https://doi.org/10.14710/reaktor.13.3.155-164
Kamsiati, E., Herawati, H., & Purwani, E. Y. (2017). Potensi pengembangan plastik biodegradable berbasis pati sagu dan ubi kayu di Indonesia. Jurnal Penelitian Dan Pengembangan Pertanian, 36(2), 67–76. https://doi.org/10.21082/jp3.v36n2.2017.p67-76
Kearsley, M. W., & Dziedzic, S. Z. (1995). Handbook of Starch Hydrolysis Products and their Derivatives. Glasglow: Blackie Academic & Profesional.
Khalil, H. P. S. A., Tye, Y. Y., Leh, C. P., Saurabh, C. K., Ariffin, F., Mohammad Fizree, H., … Suriani, A. B. (2018). Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging Applications. In Bionanocomposites for Packaging Applications (pp. 49–69). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-67319-6_3
Koswara, S. (2009). Teknologi Pengolahan Singkong (Teori dan Praktek). Bogor: Institut Pertanian Bogor.
Kumar, S., & Thakur, K. (2017). Bioplastics - classification, production and their potential food applications. Journal of Hill Agriculture, 8(2), 118–129. https://doi.org/10.5958/2230-7338.2017.00024.6
Kuruppalil, Z. (2011). Green plastics: An emerging alternative for petroleum based plastics? In IAJC-ASEE International Conference. Hartford: Hartford University.
Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366–375. https://doi.org/10.3144/expresspolymlett.2009.46
Malathi, A. N., Santhosh, K. S., & Udaykumar, N. (2014). Recent trends of biodegradable polymer: Biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Current Trends in Technology and Sciences, 3(2), 73–79.
Maryanti, E., Pasaribu, C., Adfa, M., Yudha S, S. P., & Fitriani, D. (2016). Pembuatan bioplastik berbahan pati ubi jalar (Ipomoea batatas L.), gliserin dan penambahan nanopartikel zno dengan menggunakan metode melt-intercalation. Gradien : Jurnal Ilmiah MIPA, 12(2), 1175–1180.
Matsue, Y., Sato, H., Uchimura, Y., & Ogata, T. (2002). Influence of environmental temperature during the ripening period on the amylose content and whiteness of low-amylose rice. Japanese Journal of Crop Science, 71(4), 463–468. https://doi.org/10.1626/jcs.71.463
Nadia, L., Wirakartakusumah, M. A., Andarwulan, N., & Purnomo, E. H. (2013). Karakterisasi sifat fisikokimia dan fungsional fraksi pati uwi ungu (Dioscorea alata). Penelitian Gizi Dan Makanan (The Journal of Nutrition and Food Research), 36(2), 91–102.
Noda, T., Kimura, T., Otani, M., Ideta, O., Shimada, T., Saito, A., & Suda, I. (2002). Physicochemical properties of amylose-free starch from transgenic sweet potato. Carbohydrate Polymers, 49(3), 253–260. https://doi.org/10.1016/S0144-8617(01)00343-5
Puncha-arnon, S., Puttanlek, C., Rungsardthong, V., Pathipanawat, W., & Uttapap, D. (2007). Changes in physicochemical properties and morphology of canna starches during rhizomal development. Carbohydrate Polymers, 70(2), 206–217. https://doi.org/10.1016/j.carbpol.2007.03.020
Santiago, G. T., Gante, C. R., García-Lara, S., Verdolotti, L., Di Maio, E., & Iannace, S. (2015). Thermoplastic processing of blue maize and white Sorghum flours to produce bioplastics. Journal of Polymers and the Environment, 23(1), 72–82. https://doi.org/10.1007/s10924-014-0708-1
Sara, Y., Saleh, A., & Ramadani, K. (2018). Sintesis dan Uji Kualitas Plastik Biodegradable dari Pati Kulit Singkong Menggunakan Variasi Penguat Logam ZnO dan Plasticizer Gliserol. Jurusan Kimia. fakultas Sains dan teknologi. Universitas Islam Negeri Alauddin. Makassar.
Sit, N., Deka, S. C., & Misra, S. (2015). Optimization of starch isolation from taro using combination of enzymes and comparison of properties of starches isolated by enzymatic and conventional methods. Journal of Food Science and Technology, 52(7), 4324–4332. https://doi.org/10.1007/s13197-014-1462-z
Sriroth, K., Chollakup, R., Piyachomkwan, K., & Oates, C. G. (2001). Biodegradable Plastics from Cassava Starch in Thailand. In Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs (pp. 538–553). Ho Chi Minh City: Centro Internacional de Agricultura Tropical.
Suhery, W. N., Anggraini, D., & Endri, N. (2015). Pembuatan dan evaluasi pati talas (Colocasia esculenta Schoot) termodifikasi dengan bakteri asam laktat (Lactobacillus sp). JSFK (Jurnal Sains Farmasi Dan Klinis), 1(2), 207–214. https://doi.org/10.29208/jsfk.2015.1.2.36
Susanti, Malago, J. D., & Junaedi, S. (2015). Sintesis komposit bioplastik berbahan dasar tepung tapioka dengan penguat serat bambu. Jurnal Sains Dan Pendidikan Fisika, 11(2), 179–184.
Szymońska, J., Targosz-Korecka, M., & Krok, F. (2009). Characterization of starch nanoparticles. Journal of Physics: Conference Series, 146, 012027. https://doi.org/10.1088/1742-6596/146/1/012027
Thulasisingh, A., Kumar, K., Yamunadevi, B., Poojitha, N., SuhailMadharHanif, S., & Kannaiyan, S. (2021). Biodegradable packaging materials. Polymer Bulletin. https://doi.org/10.1007/s00289-021-03767-x
Utami, N. W., & Diyono, D. (2011). Respon pertumbuhan dan produksi 4 varian ganyong (Canna edulis) terhadap intensitas naungan dan umur panen yang berbeda. Jurnal Teknologi Lingkungan, 12(3), 333–343. https://doi.org/10.29122/jtl.v12i3.1242
Vankar, P. S., & Srivastava, J. (2018). A review-canna the wonder plant. Journal of Textile Engineering & Fashion Technology, 4(2), 158–162. https://doi.org/10.15406/jteft.2018.04.00134
Widyatmoko, H., Subagio, A., & Nurhayati, N. (2018). Sifat-sifat fisikokimia pati ubi kayu terfermentasi khamir indigenus tapai. Agritech, 38(2), 140–150. https://doi.org/10.22146/agritech.26323
Witthayanant, S. (2000). edible biennial plant head, Canna edulis Ker. CANNACEAE on white background. Retrieved from https://www.shutterstock.com/image-photo/edible-biennial-plant-head-canna-edulis-780937408
https://doi.org/10.21776/ub.industria.2021.010.02.9
Refbacks
- There are currently no refbacks.