Elimination of Aflatoxins from Two Selected Nigerian Vegetable Oils using Magnetic Chitosan Nanoparticles

Oluyinka Eunice Aringbangba, Flora Oluwafemi, Adelodun Lawrence Kolapo, Abideen Idowu Adeogun, Temitope O. S. Popoola



Activated charcoal and imarsil (local adsorbent) had shown significant Aflatoxin (AF) decontamination potentials in vegetable oil at a low AF contamination level of ≤ 9 ng/L. AF contamination in vegetable oils can be more than a hundred-fold of this. Therefore, it is needed to investigate the potential of other adsorbents at higher AF contamination levels. Magnetic Chitosan Nanoparticle (MCNP) was synthesized, and its aflatoxins extraction efficiency from two edible vegetable oils was investigated. MCNP exhibited extraction efficiencies of 82.80 – 100% and 94.87 – 100% in palm kernel oil and palm oil at the contamination levels of 579.6 and 964.6 ng/L respectively. Total aflatoxins cleanup of the palm oil and palm kernel oil was possible at 30 °C within 30 and 60 minutes, respectively, at the optimized condition of 4.4 mg/L MCNP. MCNP concentration, temperature of extraction, and contact time were significant (p < 0.05) in palm kernel oil, while these conditions were not significant (p > 0.05) in palm oil. The results of the present investigation depict that the AF extraction efficiency of MCNP depends on the type of vegetable oil and that MCNP could be a credible alternative for AF decontamination of the investigated vegetable oil.

Keywords: aflatoxins, chitosan, contamination, nanoparticles, vegetable oils



Arang aktif dan imarsil (adsorben lokal) mempunyai potensi dekontaminasi aflatoksin (AF) yang signifikan dalam minyak nabati dengan tingkat kontaminasi AF rendah, yaitu ≤ 9 ng/L. AF dalam minyak nabati dapat lebih dari seratus kali lipat tingkat kontaminasi tersebut. Oleh karena itu, penelitian potensi adsorben lain perlu dilakukan pada tingkat kontaminasi AF yang lebih tinggi. Penelitian ini menganalisis sintesis Magnetic Chitosan Nanoparticle (MCNP) dan efisiensi ekstraksi aflatoksin dari dua minyak nabati konsumsi (minyak inti sawit dan minyak sawit). Efisiensi ekstraksi minyak inti sawit dan minyak sawit pada tingkat pencemaran 579,6 dan 964,6 ng/L, MCNP masing-masing sebesar 82,80 - 100% dan 94,87 - 100%. Pembersihan aflatoksin total pada minyak sawit dan minyak inti sawit dapat terjadi pada suhu 30 °C dalam waktu masing-masing 30 dan 60 menit, pada kondisi optimal MCNP, yaitu 4,4 mg/L. Konsentrasi MCNP, suhu ekstraksi, dan waktu kontak signifikan (p < 0,05) pada minyak inti sawit, tetapi kondisi ini tidak signifikan (p > 0,05) pada minyak kelapa sawit. Hasil penelitian ini menunjukkan bahwa efisiensi ekstraksi AF MCNP tergantung pada jenis minyak nabati dan MCNP dapat menjadi alternatif untuk dekontaminasi AF dari minyak nabati yang diteliti.

Kata kunci: aflatoksin, kitosan, kontaminasi, minyak nabati, nano partikel


aflatoxins; chitosan; contamination; nanoparticles; vegetable oils; aflatoksin; kitosan; kontaminasi; minyak nabati; nanopartikel

Full Text:



Adeyeye, S. A. O. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1213127

Bao, L., Trucksess, M. W., & White, K. D. (2010). Determination of aflatoxins B1, B2, G1, and G2 in olive oil, peanut oil, and sesame oil. Journal of AOAC International, 93(3), 936–942.

Codex Alimentarius Commission. (1995). Codex General Standard for Contaminants and Toxins in Food and Feed (Codex Stan 193-1995).

Diao, E., Shen, X., Zhang, Z., Ji, N., Ma, W., & Dong, H. (2015). Safety evaluation of aflatoxin B 1 in peanut oil after ultraviolet irradiation detoxification in a photodegradation reactor. International Journal of Food Science & Technology, 50(1), 41–47. https://doi.org/10.1111/ijfs.12648

Fan, L., Li, M., Lv, Z., Sun, M., Luo, C., Lu, F., & Qiu, H. (2012). Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids and Surfaces B: Biointerfaces, 95, 42–49. https://doi.org/10.1016/j.colsurfb.2012.02.007

Filho, S. T. S., Junqueira, O. M., Laurentiz, A. C. de, Filardi, R. da S., Rubio, M. da S., Duarte, K. F., & Laurentiz, R. da S. de. (2016). Effects of mycotoxin adsorbents in aflatoxin B 1 - and fumonisin B 1 -contaminated broiler diet on performance and blood metabolite. Revista Brasileira de Zootecnia, 45(5), 250–256. https://doi.org/10.1590/S1806-92902016000500007

Giakoumis, E. G. (2013). A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy, 50, 858–878. https://doi.org/10.1016/j.renene.2012.07.040

Greeff-Laubscher, M. R., Beukes, I., Marais, G. J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105–117. https://doi.org/10.1080/21501203.2019.1604575

Horky, P., Skalickova, S., Baholet, D., & Skladanka, J. (2018). Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8(9), 727. https://doi.org/10.3390/nano8090727

Hosseini, F., Sadighian, S., Hosseini-Monfared, H., & Mahmoodi, N. M. (2016). Dye removal and kinetics of adsorption by magnetic chitosan nanoparticles. Desalination and Water Treatment, 57(51), 24378–24386. https://doi.org/10.1080/19443994.2016.1143879

Ingenbleek, L., Sulyok, M., Adegboye, A., Hossou, S. E., Koné, A. Z., Oyedele, A. D., … Krska, R. (2019). Regional Sub-Saharan Africa total diet study in Benin, Cameroon, Mali, and Nigeria reveals the presence of 164 mycotoxins and other secondary metabolites in foods. Toxins, 11(3), 134. https://doi.org/10.3390/toxins11030134

Ji, N., Diao, E., Li, X., Zhang, Z., & Dong, H. (2015). Detoxification and safety evaluation of aflatoxin B 1 in peanut oil using alkali refining. Journal of the Science of Food and Agriculture, 96(12), 4009–4014. https://doi.org/10.1002/jsfa.7592

Karimnezhad, K., & Moghimi, A. (2014). Extraction of Zn(II) using magnetic chitosan nanoparticles grafted with B-cyclodextrin and determination by FAAS. Oriental Journal of Chemistry, 30(1), 95–103. https://doi.org/10.13005/ojc/300112

Kolapo, A. L., Oladimeji, G. R., Ifejika, A. I., Osakwe, O. E., Eyitayo, I. R., & Oyelakin, A. O. (2012). Aflatoxin, nutritive values and microbiological status of stored cakes of some selected Nigerian oil seeds. Global Journal of Science Frontier Research, 12(5), 13–21.

Kovač, M., Šubarić, D., Bulaić, M., Kovač, T., & Šarkanj, B. (2018). Yesterday masked, today modified; what do mycotoxins bring next? Archives of Industrial Hygiene and Toxicology, 69(3), 196–214. https://doi.org/10.2478/aiht-2018-69-3108

Ledoux, D., Rottinghaus, G., Bermudez, A., & Alonso-Debolt, M. (1999). Efficacy of a hydrated sodium calcium aluminosilicate to ameliorate the toxic effects of aflatoxin in broiler chicks. Poultry Science, 78(2), 204–210. https://doi.org/10.1093/ps/78.2.204

Li, J.-M., Meng, X.-G., Hu, C.-W., & Du, J. (2009). Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology, 100(3), 1168–1173. https://doi.org/10.1016/j.biortech.2008.09.015

Luo, Y., Zhou, Z., & Yue, T. (2017). Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chemistry, 221, 317–323. https://doi.org/10.1016/j.foodchem.2016.09.008

McCullum, C., Tchounwou, P., Ding, L.-S., Liao, X., & Liu, Y.-M. (2014). Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. Journal of Agricultural and Food Chemistry, 62(19), 4261–4267. https://doi.org/10.1021/jf501659m

Mgbeahuruike, A. C., Ejioffor, T. E., Christian, O. C., Shoyinka, V. C., Karlsson, M., & Nordkvist, E. (2018). Detoxification of aflatoxin-contaminated poultry feeds by 3 adsorbents, bentonite, activated charcoal, and fuller’s earth. Journal of Applied Poultry Research, 27(4), 461–471. https://doi.org/10.3382/japr/pfy054

Mohamed, S. R., El-Desouky, T. A., Hussein, A. M. S., Mohamed, S. S., & Naguib, K. M. (2016). Modified rice straw as adsorbent material to remove aflatoxin B 1 from aqueous media and as a fiber source in fino bread. Journal of Toxicology, 2016, 1–10. https://doi.org/10.1155/2016/6869582

Mohammed, A., Chala, A., Dejene, M., Fininsa, C., Hoisington, D. A., Sobolev, V. S., & Arias, R. S. (2016). Aspergillus and aflatoxin in groundnut ( Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia. Food Additives & Contaminants: Part B, 9(4), 290–298. https://doi.org/10.1080/19393210.2016.1216468

Nabizadeh, S., Shariatifar, N., Shoeibi, S., Khaniki, G. J., Nodeh, R. N., & Shokoohi, E. (2015). Validation of simultaneous analysis method for determination of aflatoxins in olive oil by high performance liquid chromatography-fluorescence detector. Journal of Food Safety and Hygiene, 1(2), 63–68.

Naresh, S., Sunil, K. S., Akki, S., Ashika, B. D., Roy, C. L., & Sathyamurthy, B. (2018). GCMS and FTIR analysis on the methanolic extract of red Vitis vinifera pulp. World Journal of Pharmaceutical and Life Sciences, 4(8), 153–159.

Oluwafemi, F., Badmos, A., Kolapo, A., Kareem, S., & Ademuyiwa, O. (2014a). Comparative efficacies of imarsil and activated charcoal in reducing aflatoxin M1 in cows’ milk. Global Journal of Science Frontier Research, 14(10), 1–9.

Oluwafemi, F., Badmos, A. O., Kareem, S. O., Ademuyiwa, O., & Kolapo, A. L. (2014b). Survey of aflatoxin M1 in cows’ milk from free-grazing cows in Abeokuta, Nigeria. Mycotoxin Research, 30(4), 207–211. https://doi.org/10.1007/s12550-014-0204-4

Oluwafemi, F., Oni, E. O., Kareem, S. O., Omemu, A. M., & Kolapo, A. L. (2018). Extent of microbial contamination of refined and unrefined vegetable oils sold in South-west Nigeria. Turkish Journal of Agriculture - Food Science and Technology, 6(4), 396–400. https://doi.org/10.24925/turjaf.v6i4.396-400.1430

Oluwafemi, F., Oni, E. O., & Kolapo, A. L. (2017). Mycoflora and aflatoxin levels of edible vegetable oils sold in Nigeria and possible control measures using imarsil and activated charcoal. In 2nd International Conference on Mycology & Mushrooms. Chicago.

Oni, E., Oluwafemi, F., Kareem, S., & Omemu, A. (2019). Detoxifying potentials of two indigenous adsorbents: imarsil and activated charcoal in the reduction of aflatoxin in vegetable oils consumed in Nigeria. Access Microbiology, 1(1A). https://doi.org/10.1099/acmi.ac2019.po0022

Petrić, J., Šarkanj, B., Mujić, I., Mujić, A., Sulyok, M., Krska, R., … Jokić, S. (2018). Effect of pretreatments on mycotoxin profiles and levels in dried figs. Archives of Industrial Hygiene and Toxicology, 69(4), 328–333. https://doi.org/10.2478/aiht-2018-69-3147

Rasheed, U., Ain, Q. U., Yaseen, M., Santra, S., Yao, X., & Liu, B. (2020). Assessing the aflatoxins mitigation efficacy of blueberry pomace biosorbent in buffer, gastrointestinal fluids and model wine. Toxins, 12(7), 466. https://doi.org/10.3390/toxins12070466

Schwartzbord, J. R., & Brown, D. L. (2015). Aflatoxin contamination in Haitian peanut products and maize and the safety of oil processed from contaminated peanuts. Food Control, 56, 114–118. https://doi.org/10.1016/j.foodcont.2015.03.014

Sheikha, A. F. El. (2019). Molecular detection of mycotoxigenic fungi in foods: The case for using PCR-DGGE. Food Biotechnology, 33(1), 54–108. https://doi.org/10.1080/08905436.2018.1547644

Sheikha, A. F. El, Levin, R., & Xu, J. (2018). Molecular Techniques in Food Biology. (A. F. El Sheikha, R. Levin, & J. Xu, Eds.). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119374633

Shephard, G. S. (2018). Aflatoxins in peanut oil: food safety concerns. World Mycotoxin Journal, 11(1), 149–158. https://doi.org/10.3920/WMJ2017.2279

The Commission of The European Communities. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Fodstuffs. Adopted in 1995. Revised in 1997, 2006, 2008, 2009. Amendment 2010, 2012, 2013, 2014.

Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, 80(5), 1106–1122. https://doi.org/10.1093/ajcn/80.5.1106

Xie, F., Lai, W., Saini, J., Shan, S., Cui, X., & Liu, D. (2014). Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce. Food Chemistry, 150, 99–105. https://doi.org/10.1016/j.foodchem.2013.10.147

Xiong, Y., Tu, Z., Huang, X., Xie, B., Xiong, Y., & Xu, Y. (2015). Magnetic beads carrying poly (acrylic acid) brushes as “nanobody containers” for immunoaffinity purification of aflatoxin B 1 from corn samples. RSC Advances, 5(94), 77380–77387. https://doi.org/10.1039/C5RA15843E

Zahoor, M., & Ali Khan, F. (2018). Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arabian Journal of Chemistry, 11(5), 729–738. https://doi.org/10.1016/j.arabjc.2014.08.025

Zamora-Mora, V., Fernández-Gutiérrez, M., Román, J. S., Goya, G., Hernández, R., & Mijangos, C. (2014). Magnetic core–shell chitosan nanoparticles: Rheological characterization and hyperthermia application. Carbohydrate Polymers, 102, 691–698. https://doi.org/10.1016/j.carbpol.2013.10.101



  • There are currently no refbacks.