Pengeringan Dendeng Ikan Manyung (Arius thalassinus) dengan Pengering Energi Surya YSD-UNIB12

Yuwana Yuwana, Andre Zuliansyah, Laili Susanti, Zulman Efendi

Abstract


Abstrak

Tujuan penelitian ini adalah mendiskripsikan kurva moisture ratio dan melakukan pendugaan lama pengeringan dendeng ikan manyung (Arius thalasisinus) dengan Pengering Energi Surya YSD-UNIB12. Percobaan dilakukan dengan mempersiapkan sampel sesuai dengan cara pembuatan dendeng ikan dan selanjutnya tiga perlakuan ditetapkan yaitu ketebalan dendeng (0,5 cm dan 1 cm), lama perendaman dalam larutan bumbu (1 jam, 3 jam dan 5 jam), dan posisi sampel pada rak yaitu rak1 (bawah), rak2 (tengah) dan rak3 (atas), masing-masing dilakukan dengan tiga ulangan. Pengamatan dilakukan terhadap suhu dan kelembaban relatif ruang pengering dan udara luar, dan penurunan berat sampel sepanjang proses pengeringan dari pukul 09.00-16.00 WIB sampai pengeringan selesai dengan kadar air akhir ikan 12%. Hasil percobaan menunjukkan bahwa pengering mampu menaikkan suhu udara 15,2 oC lebih tinggi dari udara luar dan menurunkan kelembaban relatif 31% lebih rendah dari udara luar. Model kurva hubungan antara moisture ratio dan kadar air dengan waktu pengeringan adalah kuadratik. Lama pengeringan hanya dipengaruhi oleh tebal dendeng dan posisi di rak. Rata-rata waktu penyelesaian pengeringan berkisar antara 11,9 jam sampai 30,3 jam.

Kata kunci: kadar air, lama waktu pengeringan, moisture ratio, pendugaan

 

Abstract

The objectives of this study were to describe the curves of moisture ratio and moisture content and to predict drying times of the jerked flesh of Manyung fish (Arius thalassinus) dried by utilizing YSD-UNIB12 solar. The experiments were set up by employing three treatments, i.e., thickness of jerked flesh (0.5 cm and 1 cm), flesh submerging time in spices solution (1, 3 and 5 hours), and rack’s positions that were rack1 (lower), rack2 (middle) and rack3 (upper) with three replications each. The observation was carried out at 9 AM to 4 AM for drying room temperature and relative humidity, ambient temperature and relative humidity, and weight of samples along drying process until the fish moisture content of 12%. The result of experiments showed that the dryer generated the drying chamber temperature 15.2oC higher than the ambient temperature, and the drying chamber relative humidity 31% lower than the ambient relative humidity. Both models of curves of moisture ratio and moisture content versus drying time were quadratic (polynomial second order). Only the position of the rack and the thickness of jerked fish affected drying time. The drying time to produce dry jerked fish varied from 11.9 hours to 30.3 hours

Keywords: drying time, moisture content, moisture ratio, prediction


Keywords


kadar air; lama waktu pengeringan; moisture ratio; pendugaan; drying time; moisture content; prediction

Full Text:

PDF

References


Almuhanna, E. A. (2012). Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the Eastern Province of Saudi Arabia. Journal of Agricultural Science, 4(3), 237–246. https://doi.org/10.5539/jas.v4n3p237

Arun, S., Ayyappan, S., & Sreenarayanan, V. V. (2014). Experimental and comparison studies on drying characteristics of sliced cut tomatoes and cube cut tomatoes. International Journal of Recent Technology and Engineering, 3(4), 25–31.

Azimi, A., Tavakoli, T., Beheshti, H. K., & Rahimi, A. (2012). Experimental study on eggplant drying by an indirect solar dryer and open sun drying. Iranica Journal of Energy & Environment, 3(4), 347–353. https://doi.org/10.5829/idosi.ijee.2012.03.04.14

Banout, J., & Ehl, P. (2010). Using a Double-pass solar drier for drying of bamboo shoots. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 111(1), 119–127.

Munir, A., Sultan, U., & Iqbal, M. (2013). Development and performance evaluation of a locally fabricated portable solar tunnel dryer for drying of fruits, vegetables and medicinal plants. Pakistan Journal of Agricultural Sciences, 50(3), 493–498.

Nandwani, S. S. (2011). Design construction and study of direct and indirect natural circulation solar dryer in Costa Rica. ISESCO Science and Technology Vision, 7(11), 43–47.

Olokor, J. O., & Omojowo, F. S. (2009). Adaptation and improvement of a simple solar tent dryer to enhance fish drying. Nature and Science, 7(10), 18–24.

Phadke, P. C., Walke, P. V, & Kriplani, V. M. (2015). A review on indirect solar dryers. ARPN Journal of Engineering and Applied Sciences, 10(8), 3360–3371.

Silvia, E., & Yuwana. (2012). Kinerja Prototipe Pengering Energi Surya Model YSD-UNIB12 Dalam Mengeringkan Singkong. In Seminar Nasional Menuju Pertanian yang Berdaulat (pp. 263–270). Bengkulu: Badan Penerbitas Fakultas Pertanian Universitas Bengkulu.

Sulaiman, F., Abdullah, N., & Aliasak, Z. (2013). Solar drying system for drying empty fruit bunches. Journal of Physical Science, 24(1), 75–93.

Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Paper - American Society of Agricultural Engineers.

Yuwana, Sidebang, B., & Silvia, E. (2013). Kinerja pengering energi surya model YSD-UNIB12 termodifikasi untuk mengeringkan bahan pakaian. Jurnal Agroindustri, 3(2), 98–104.

Yuwana, & Silvia, E. (2012). Penggunaan Pengering Energi Surya Model YSD-UNIB12 Untuk Pengeringan Cabai Merah, Sawi Dan Daun Singkong. In Seminar Nasional Menuju Pertanian yang Berdaulat (pp. 145–152). Bengkulu: Badan Penerbitas Fakultas Pertanian Universitas Bengkulu.

Yuwana, Y., Tarigan, R. N. B., & Silvia, E. (2017). Solar drying modes of catfish (Clarias gariepinus). International Journal of Engineering Inventions, 6(4), 6–12.




https://doi.org/10.21776/ub.industria.2019.008.01.2

Refbacks

  • There are currently no refbacks.