Micrococcus yunnanensis and Psychrobacter sp. as Potential Producers of Polymers from Hot Spring

Asma Jabeen, Rida Batool, Nazia Jamil



Polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs) are biopolymers bacteria under nutrient-limiting conditions. In this study, bacterial strains were isolated from hot springs. Soil samples were collected from Tatta Pani, Azad Kashmir, Pakistan. Bacterial strains AJ2 and AJ3 were selected due to their ability to produce PHAs and EPSs. Phylogenetic analysis showed that strain AJ2 was Micrococcus yunnanensis and AJ3 was Psychrobacter sp. Three carbon sources (glucose, glycerol, and molasses) were used for polymer production. The effect of high pH (8) and high temperature (55 °C) was checked on PHAs and EPSs production. The highest yield of PHAs was given by strain AJ3 (89.43%) with molasses. When grown at 55 °C for 24 hours, strain AJ3 showed the highest PHAs accumulation, 79% with glucose. At alkaline pH 8, strain AJ3 gave 34% PHAs with molasses. The highest EPSs production was observed for strain AJ3. AJ3 gave 70g/L of EPSs with both glucose and glycerol. The amplification of the phaC gene was done to confirm the genetic basis of PHAs production. FTIR analysis showed clear bands at 1722 cm-1 and 2925 cm-1 representing the carbonyl and alkyl groups of PHAs, respectively.

Keywords: exopolysaccharides, Kashmir, Micrococcus yunnanensis, polyhydroxyalkanoates, Psychrobacter sp.



Polihidroksialkanoat (PHA) dan eksopolisakarida (EPS) adalah biopolimer yang diproduksi oleh bakteri yang hidup pada kondisi nutrisi yang terbatas. Dalam penelitian ini, strain bakteri diisolasi dari sumber air panas. Sampel tanah dikumpulkan dari Tatta Pani, Azad Kashmir, Pakistan. Strain bakteri AJ2 dan AJ3 dipilih karena kemampuannya menghasilkan PHA dan EPS. Analisis filogenetik menunjukkan bahwa strain AJ2 adalah Micrococcus yunnanensis dan AJ3 adalah Psychrobacter sp. Tiga sumber karbon (glukosa, gliserol, dan molase) digunakan untuk produksi polimer. pH tinggi (8) dan suhu tinggi (55 °C) diperiksa pengaruhnya terhadap produksi PHA dan EPS. Hasil tertinggi PHA diberikan oleh strain AJ3 (89,43%) dengan tetes tebu. Saat ditumbuhkan pada suhu 55 °C selama 24 jam, strain AJ3 menunjukkan akumulasi PHA tertinggi, 79% dengan glukosa. Pada pH basa 8, strain AJ3 memberikan 34% PHA dengan molase. Produksi EPS tertinggi diamati untuk strain AJ3. AJ3 menghasilkan 70g/L EPS dengan glukosa dan gliserol. Amplifikasi gen phaC dilakukan untuk mengkonfirmasi dasar genetik produksi PHA. Analisis FTIR menunjukkan pita yang jelas pada 1722 cm-1 dan 2925 cm-1 masing-masing mewakili gugus karbonil dan alkil PHA.

Kata kunci: eksopolisakarida, Kashmir, Micrococcus yunnanensis, polihidroksialkanoat, Psychrobacter sp.


exopolysaccharides; Kashmir; Micrococcus yunnanensis; polyhydroxyalkanoates; Psychrobacter sp.; eksopolisakarida; polihidroksialkanoat

Full Text:



Acosta-Cárdenas, A., Alcaraz-Zapata, W., & Cardona-Betancur, M. (2018). Sugarcane molasses and vinasse as a substrate for polyhydroxyalkanoates (PHA) production. DYNA, 85(206), 220–225. https://doi.org/10.15446/dyna.v85n206.68279

Ahmed, M., Anjum, M. A., Khaqan, K., & Hussain, S. (2014). Biodiversity in morphological and physico-chemical characteristics of wild raspberry (Rubus idaeus L.) germplasm collected from temperate region of Azad Jammu & Kashmir (Pakistan). Acta Scientiarum Polonorum-Hortorum Cultus, 13, 117–134.

Ahmed, M. J., & Akhtar, T. (2016). Indigenous knowledge of the use of medicinal plants in Bheri, Muzaffarabad, Azad Kashmir, Pakistan. European Journal of Integrative Medicine, 8(4), 560–569. https://doi.org/10.1016/j.eujim.2016.01.006

Brunetti, L., Degli Esposti, M., Morselli, D., Boccaccini, A. R., Fabbri, P., & Liverani, L. (2020). Poly(hydroxyalkanoate)s meet benign solvents for electrospinning. Materials Letters, 278, 128389. https://doi.org/10.1016/j.matlet.2020.128389

Charchoghlyan, H., Bae, J.-E., Kwon, H., & Kim, M. (2017). Rheological properties and volatile composition of fermented milk prepared by exopolysaccharide-producing Lactobacillus acidophilus n.v. Er2 317/402 strain Narine. Biotechnology and Bioprocess Engineering, 22(3), 327–338. https://doi.org/10.1007/s12257-017-0065-8

Chaudhry, W. N., Jamil, N., Ali, I., Ayaz, M. H., & Hasnain, S. (2011). Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Annals of Microbiology, 61(3), 623–629. https://doi.org/10.1007/s13213-010-0181-6

Ciesielski, S., Górniak, D., Możejko, J., Świątecki, A., Grzesiak, J., & Zdanowski, M. (2014). The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Current Microbiology, 69(5), 594–603. https://doi.org/10.1007/s00284-014-0629-1

Ferreira, J. A., & Åkesson, D. (2020). Aerobic and Anaerobic Degradation Pathways of PHA. In M. Koller (Ed.), The Handbook of Polyhydroxyalkanoates (pp. 317–338). CRC Press. https://doi.org/10.1201/9781003087663-17

Forfang, K., Zimmermann, B., Kosa, G., Kohler, A., & Shapaval, V. (2017). FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLOS ONE, 12(1), e0170611. https://doi.org/10.1371/journal.pone.0170611

Freitas, F., Alves, V. D., & Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 29(8), 388–398. https://doi.org/10.1016/j.tibtech.2011.03.008

Galle, S., Schwab, C., Arendt, E. K., & Gänzle, M. G. (2011). Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiology, 28(3), 547–553. https://doi.org/10.1016/j.fm.2010.11.006

Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2013). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1

Hagagy, N., Saddiq, A. A. N., Tag, H. M., Abdelgawad, H., & Selim, S. (2021). Characterization of bioplastics produced by haloarchaeon Haloarcula sp strain NRS20 using cost-effective carbon sources. Materials Research Express, 8(10), 105404. https://doi.org/10.1088/2053-1591/ac3166

Hassan, S. W. M., & Ibrahim, H. A. H. (2017). Production, characterization and valuable applications of exopolysaccharides from marine Bacillus subtilis SH1. Polish Journal of Microbiology, 66(4), 449–462. https://doi.org/10.5604/01.3001.0010.7001

Kalia, V. C., & Kumar, P. (Eds.). (2017). Microbial Applications Vol.1. Springer International Publishing. https://doi.org/10.1007/978-3-319-52666-9

Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., & Reis, M. A. M. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 4(4), 55. https://doi.org/10.3390/bioengineering4020055

Liau, C. P., Bin Ahmad, M., Shameli, K., Yunus, W. M. Z. W., Ibrahim, N. A., Zainuddin, N., & Then, Y. Y. (2014). Preparation and characterization of polyhydroxybutyrate/polycaprolactone nanocomposites. The Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/572726

Lim, H., Chuah, J.-A., Chek, M. F., Tan, H. T., Hakoshima, T., & Sudesh, K. (2021). Identification of regions affecting enzyme activity, substrate binding, dimer stabilization and polyhydroxyalkanoate (PHA) granule morphology in the PHA synthase of Aquitalea sp. USM4. International Journal of Biological Macromolecules, 186, 414–423. https://doi.org/10.1016/j.ijbiomac.2021.07.041

Mecozzi, M., & Sturchio, E. (2017). Computer assisted examination of infrared and near infrared spectra to assess structural and molecular changes in biological samples exposed to pollutants: A case of study. Journal of Imaging, 3(1), 11. https://doi.org/10.3390/jimaging3010011

Mohandas, S. P., Balan, L., Jayanath, G., Anoop, B. S., Philip, R., Cubelio, S. S., & Bright Singh, I. S. (2018). Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. International Journal of Biological Macromolecules, 119, 380–392. https://doi.org/10.1016/j.ijbiomac.2018.07.044

Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., Alexandersson, T., Bengtsson, S., Majone, M., & Werker, A. (2014). Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Science and Technology, 69(1), 177–184. https://doi.org/10.2166/wst.2013.643

Muangwong, A., Boontip, T., Pachimsawat, J., & Napathorn, S. C. (2016). Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microbial Cell Factories, 15(1), 55. https://doi.org/10.1186/s12934-016-0454-2

Orhan-Yanıkan, E., Gülseren, G., & Ayhan, K. (2020). Protein profile of bacterial extracellular polymeric substance by Fourier transform infrared spectroscopy. Microchemical Journal, 156, 104831. https://doi.org/10.1016/j.microc.2020.104831

Patel, A., & Prajapati, J. B. (2013). Food and health applications of exopolysaccharides produced by lactic acid bacteria. Advances in Dairy Research, 1(2). https://doi.org/10.4172/2329-888X.1000107

Poli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253

Purama, R. K., Al-Sabahi, J. N., & Sudesh, K. (2018). Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3Hydroxybutyrate-co-3Hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Industrial Crops and Products, 119, 83–92. https://doi.org/10.1016/j.indcrop.2018.04.013

Ray, S., & Kalia, V. C. (2017). Biomedical applications of polyhydroxyalkanoates. Indian Journal of Microbiology, 57(3), 261–269. https://doi.org/10.1007/s12088-017-0651-7

Shrivastav, A., Kim, H.-Y., & Kim, Y.-R. (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Research International, 2013, 1–12. https://doi.org/10.1155/2013/581684

Sohail, R., & Jamil, N. (2021). Aliphatic Biopolymers as a Sustainable Green Alternative to Traditional Petrochemical-Based Plastics. In Bioplastics for Sustainable Development (pp. 295–306). Springer Singapore. https://doi.org/10.1007/978-981-16-1823-9_11

Sohail, R., Jamil, N., Ali, I., & Munir, S. (2020). Animal fat and glycerol bioconversion to polyhydroxyalkanoate by produced water bacteria. E-Polymers, 20(1), 92–102. https://doi.org/10.1515/epoly-2020-0011

Soto, L. R., Thabet, H., Maghembe, R., Gameiro, D., Van‐Thuoc, D., Dishisha, T., & Hatti‐Kaul, R. (2021). Metabolic potential of the moderate halophile Yangia sp. ND199 for co‐production of polyhydroxyalkanoates and exopolysaccharides. MicrobiologyOpen, 10(1). https://doi.org/10.1002/mbo3.1160

Tribelli, P., & López, N. (2018). Reporting key features in cold-adapted bacteria. Life, 8(1), 8. https://doi.org/10.3390/life8010008

Yang, F., Hanna, M. A., & Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for Biofuels, 5(1), 13. https://doi.org/10.1186/1754-6834-5-13

Yoshikawa, S., Kanesaki, Y., Uemura, A., Yamada, K., Okajima, M., Kaneko, T., & Ohki, K. (2021). Physiological and genomic analysis of newly-isolated polysaccharide synthesizing cyanobacterium Chroococcus sp. FPU101 and chemical analysis of the exopolysaccharide. The Journal of General and Applied Microbiology, 67(5), 2021.02.002. https://doi.org/10.2323/jgam.2021.02.002



  • There are currently no refbacks.