Pepaya sebagai Bahan Pengisi pada Produksi Pasta Tomat

Sunarmani Sunarmani, Kirana Sanggrami Sasmitaloka

Abstract


Abstrak

Pada umumnya, pasta tomat diproduksi menggunakan bahan dasar tomat yang ditambahkan dengan bahan pengisi, seperti carboxymethyl cellulose (CMC). Salah satu alternatif pengganti penggunaan CMC sebagai bahan pengisi adalah bahan pengisi alami seperti pepaya. Pepaya dapat dipakai sebagai bahan pencampur pembuatan pasta tomat karena kandungan total padatannya relatif hampir sama dengan total padatan tomat. Penelitian ini bertujuan untuk mengetahui karakteristik pasta tomat dengan penambahan pepaya sebagai bahan pengisinya. Penelitian menggunakan rancangan acak lengkap dengan perlakuan komposisi tomat dan pepaya (perbandingan tomat dan pepaya sebanyak 1:0 (kontrol), 1:1, 2:1, 4:1, dan 6:1). Setiap perlakuan diulang sebanyak lima kali. Variabel pengamatan pada penelitian adalah rendemen, total padatan terlarut, pH, total asam, vitamin C, dan uji organoleptik. Data yang diperoleh diolah menggunakan analisis sidik ragam (ANOVA) yang dilanjutkan dengan uji lanjut Duncan pada taraf nyata 5% (α = 0,05) menggunakan paket program SPSS 21.0 Statistic Software. Hasil penelitian menunjukkan bahwa pepaya dapat digunakan sebagai bahan pengisi pada pasta tomat. Penambahan buah pepaya dapat meningkatkan rendemen, total padatan terlarut, total asam, dan kandungan vitamin C pada pasta tomat. Penambahan buah pepaya sampai dengan 50% (komposisi tomat:pepaya sebanyak 2:1) menghasilkan pasta tomat yang stabil dan dapat diterima oleh konsumen.

Kata kunci: karakteristik, pasta, pengisi, pepaya, tomat

 

Abstract

Generally, tomato paste is produced using tomato as raw material ingredients added with fillers, such as carboxymethyl cellulose (CMC). Another alternative to change CMC as filler is the use of natural fillers, such as papaya. Papaya could be used as a mixing material of tomato paste production because the total soluble solid of papaya is relatively almost the same as the total soluble solid of tomato. This study aimed to determine the characteristics of tomato paste with the addition of papaya as filler. The experiment was set up in completely randomized design with the treatment of the composition of tomatoes and papaya (the ratio of tomato and papaya as much as 1:0 (control),1:1, 2:1, 4:1, and 6:1). Each treatment repeated five times. The observation variables in the study were yield, total soluble solid, pH, total acid, vitamin C, and organoleptic test. Data obtained was processed using variance analysis (ANOVA) followed by Duncan’s advanced test at 5% (α = 0,05) using the SPSS 21,0 program statistical package. The results showed that papaya can be used as filler in tomato paste. The addition of papaya could increase yield, total soluble solid, total acid, and vitamin C content in tomato paste. Added papaya fruit up to 50% (tomato and papaya composition is 2:1) produced tomato paste which is stable and acceptable to consumers.

Keywords: characteristics, filler, papaya, paste, tomato


Keywords


karakteristik; pasta; pengisi; papaya; tomat characteristics; filler; papaya; paste; tomato

Full Text:

PDF

References


Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507. https://doi.org/10.1016/j.foodchem.2010.01.026

Affognon, H., Mutungi, C., Sanginga, P., & Borgemeister, C. (2015). Unpacking postharvest losses in Sub-Saharan Africa: A meta-analysis. World Development, 66, 49–68. https://doi.org/10.1016/j.worlddev.2014.08.002

Alam, M. K., Ahmed, M., Akter, M. S., Islam, N., & Eun, J.-B. (2009). Effect of carboxymethylcellulose and starch as thickening agents on the quality of tomato ketchup. Pakistan Journal of Nutrition, 8(8), 1144–1149. https://doi.org/10.3923/pjn.2009.1144.1149

Albertini, S., Lai Reyes, A. E., Trigo, J. M., Sarriés, G. A., & Spoto, M. H. F. (2016). Effects of chemical treatments on fresh-cut papaya. Food Chemistry, 190, 1182–1189. https://doi.org/10.1016/j.foodchem.2015.06.038

AOAC. (2006). Official methods of analysis of AOAC international. Washington DC: Association of Official Analytical Chemists.

Azizah, D. N., & Rahayu, A. D. (2017). Penambahan tepung pra-masak buah sukun (Artocarpus altilis) pada pembuatan saus tomat. EDUFORTECH, 2(2), 107–113.

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129–140. https://doi.org/10.1016/j.postharvbio.2011.05.016

Chairudin. (2004). Proses Pembuatan Buah Kering dari Buah Pepaya (Carica papaya). Skripsi. Institut Pertanian Bogor. Bogor.

Dewayani, W., & Darmawidah, A. (2008). Peningkatan mutu dan daya simpan pasta tomat dengan cara blansing. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian, 11(3), 230–237.

Fagundes, C., Moraes, K., Pérez-Gago, M. B., Palou, L., Maraschin, M., & Monteiro, A. R. (2015). Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109, 73–81. https://doi.org/10.1016/j.postharvbio.2015.05.017

Farikha, I. N., Anam, C., & Widowati, E. (2013). Pengaruh jenis dan konsentrasi bahan penstabil alami terhadap karakteristik fisikokimia sari buah naga merah (Hylocereus polyrhizus) selama penyimpanan. Jurnal Technosains Pangan, 2(1), 30–38.

Ganje, M., Jafari, S. M., Dusti, A., Dehnad, D., Amanjani, M., & Ghanbari, V. (2016). Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing, 97, 12–19. https://doi.org/10.1016/j.fbp.2015.10.002

Ginting, E., Prasetiaswati, N., & Widodo, Y. (2007). Peningkatan daya guna dan nilai tambah ubi jalar berukuran kecil melalui pengolahan menjadi saos dan selai. Iptek Tanaman Pangan, 2(1), 110–122.

Hara, R., Ishigaki, M., Kitahama, Y., Ozaki, Y., & Genkawa, T. (2018). Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy. Food Chemistry, 258, 308–313. https://doi.org/10.1016/j.foodchem.2018.03.089

Hok, K. T., Setyo, W., Irawaty, W., & Soetaredjo, F. E. (2007). Pengaruh suhu dan waktu pemanasan terhadap kandungan vitamin A dan C pada proses pembuatan pasta tomat. Widya Teknik, 6(2), 111–120.

Ikeda, H., Hiraga, M., Shirasawa, K., Nishiyama, M., Kanahama, K., & Kanayama, Y. (2013). Analysis of a tomato introgression line, IL8-3, with increased Brix content. Scientia Horticulturae, 153, 103–108. https://doi.org/10.1016/j.scienta.2013.02.006

Ikram, E. H. K., Stanley, R., Netzel, M., & Fanning, K. (2016). Phytochemicals of papaya and its traditional health and culinary uses – A review. Journal of Food Composition and Analysis, 41, 201–211. https://doi.org/10.1016/j.jfca.2015.02.010

Kailaku, S. I., Dewandari, K. T., & Sunarmani. (2007). Potensi likopen dalam tomat untuk kesehatan. Buletin Teknologi PAscapanen Pertanian, 3, 50–58.

Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., & Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Science and Technology, 49(2), 213–216. https://doi.org/10.1016/j.lwt.2011.12.036

Kartika, P. N., & Nisa, F. C. (2015). Studi pembuatan osmodehidrat buah nanas (Ananas comosus L. Merr): Kajian konsentrasi gula dalam larutan osmosis dan lama perendaman. Jurnal Pangan Dan Agroindustri, 3(4), 1345–1355.

Kasso, M., & Bekele, A. (2018). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(1), 88–96. https://doi.org/10.1016/j.jssas.2016.01.005

Kitinoja, L., Saran, S., Roy, S. K., & Kader, A. A. (2011). Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. Journal of the Science of Food and Agriculture, 91(4), 597–603. https://doi.org/10.1002/jsfa.4295

Koupantsis, T., Pavlidou, E., & Paraskevopoulou, A. (2016). Glycerol and tannic acid as applied in the preparation of milk proteins – CMC complex coavervates for flavour encapsulation. Food Hydrocolloids, 57, 62–71. https://doi.org/10.1016/j.foodhyd.2016.01.007

Macheka, L., Spelt, E. J. H., Bakker, E.-J., van der Vorst, J. G. A. J., & Luning, P. A. (2018). Identification of determinants of postharvest losses in Zimbabwean tomato supply chains as basis for dedicated interventions. Food Control, 87, 135–144. https://doi.org/10.1016/j.foodcont.2017.12.017

Mahieddine, B., Amina, B., Faouzi, S. M., Sana, B., & Wided, D. (2018). Effects of microwave heating on the antioxidant activities of tomato (Solanum lycopersicum). Annals of Agricultural Sciences, 63(2), 135–139. https://doi.org/10.1016/j.aoas.2018.09.001

Marseno, D. W., Medho, M. S., & Haryadi. (2010). Pengaruh umur panen rumput laut Eucheuma cottonii terhadap sifat fisik, kimia dan fungsional karagenan. AgriTECH, 30(4), 212–217.

Mukaromah, U., Susetyorini, S. H., & Aminah, S. (2010). Kadar vitamin C, mutu fisik, pH dan mutu organoleptik sirup rosella (Hibiscus Sabdariffa, L) berdasarkan cara ekstraksi. Jurnal Pangan Dan Gizi, 1(1), 43–51.

Nisha, P., Singhal, R. S., & Pandit, A. B. (2011). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology, 4(5), 781–787. https://doi.org/10.1007/s11947-009-0300-1

Nurhayati, Siadi, K., & Harjono. (2012). Pengaruh konsentrasi natrium benzoat dan lama penyimpanan pada kadar fenolat total pasta tomat (Lycopersicum esculentum Mill). Indonesian Journal of Chemical Science (IJCS), 1(2), 158–163.

Paes, J., da Cunha, C. R., & Viotto, L. A. (2015). Concentration of lycopene in the pulp of papaya ( Carica papaya L.) by ultrafiltration on a pilot scale. Food and Bioproducts Processing, 96, 296–305. https://doi.org/10.1016/j.fbp.2015.09.003

Paskeviciute, E., Zudyte, B., & Luksiene, Z. (2018). Towards better microbial safety of fresh produce: Chlorophyllin-based photosensitization for microbial control of foodborne pathogens on cherry tomatoes. Journal of Photochemistry and Photobiology B: Biology, 182, 130–136. https://doi.org/10.1016/j.jphotobiol.2018.04.009

Porat, R., Lichter, A., Terry, L. A., Harker, R., & Buzby, J. (2018). Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology, 139, 135–149. https://doi.org/10.1016/j.postharvbio.2017.11.019

Rudito. (2005). Perlakuan komposisi gelatin dan asam sitrat dalam edible coating yang mengandung gliserol pada penyimpanan tomat. Jurnal Teknologi Pertanian, 6(1), 1–6.

Sahin, H., & Ozdemir, F. (2004). Effect of some hydrocolloids on the rheological properties of different formulated ketchups. Food Hydrocolloids, 18(6), 1015–1022. https://doi.org/10.1016/j.foodhyd.2004.04.006

Santoso, A. (2014). Pembuatan yoghurt fruit dari buah pepaya (Carica papaya l.) (Kajian konsentrasi sari buah dan jenis starter). AGRINA : Jurnal Teknologi Pertanian, 1(1), 31–39.

Schweiggert, R. M., Steingass, C. B., Esquivel, P., & Carle, R. (2012). Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles. Journal of Agricultural and Food Chemistry, 60(10), 2577–2585. https://doi.org/10.1021/jf2045069

Seveline. (2017). Penambahan bubur labu kuning terhadap preferensi saus tomat-labu kuning. Agrointek : Jurnal Teknologi Industri Pertanian, 11(1), 9–13.

Sunarmani, & Sukasih, E. (2007). Kinetika perubahan mutu fisikokimia beberapa produk pasta tomat selama penyimpanan. In Seminar Inovasi dan Alih Teknologi Pertanian untuk Pengembangan Agribisnis Industrial Pedesaan di Wilayah Marjinal (pp. 116–142). Bogor: Balai Besar Penelitian dan Pengembangan Teknologi Pertanian.

Susanti, F. R., Witono, J. R., & Cakasana, P. (2016). Studi pengolahan buah pepaya menjadi fruit leather dan manisan pepaya bernutrisi tinggi. Bandung.

Suyanti, Setyadjit, & Arif, A. Bin. (2012). Produk diversifikasi olahan untuk meningkatkan nilai tambah dan mendukung pengembangan buah pepaya (Carica papaya L) di Indonesia. Buletin Teknologi Pascapanen Pertanian, 8(2), 62–70.

Swada, J. G., Keeley, C. J., Ghane, M. A., & Engeseth, N. J. (2016). Synergistic potential of papaya and strawberry nectar blends focused on specific nutrients and antioxidants using alternative thermal and non-thermal processing techniques. Food Chemistry, 199, 87–95. https://doi.org/10.1016/j.foodchem.2015.11.087

Swadana, A. W., & Yuwono, S. S. (2014). Pendugaan umur simpan minuman berperisa apel menggunakan metode accelerated shelf life testing (ASLT) dengan pendekatan arrhenius. Jurnal Pangan Dan Agroindustri, 2(3), 203–213.

Ulyarti, U., Lavlinesia, L., Nuzula, N., & Nazarudin, N. (2018). Sifat fungsional pati ubi kelapa kuning (Dioscorea alata) dan pemanfaatannya sebagai pengental pada saus tomat. AgriTECH, 38(3), 235–242. https://doi.org/10.22146/agritech.30965

Umah, F. R. (2017). Penentuan Umur Simpan dan Stabilitas Mutu Buah Kering Pepaya (Carica papaya) dan Nanas (Ananas comosus L. Merr). Skripsi. Institut Pertanian Bogor. Bogor.

Verheul, M. J., Slimestad, R., & Tjøstheim, I. H. (2015). From producer to consumer: Greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage. Journal of Agricultural and Food Chemistry, 63(20), 5026–5034. https://doi.org/10.1021/jf505450j

Winarno, F. G. (1986). Kimia Pangan dan Gizi. Jakarta: Gramedia Pustaka Utama.

Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Current Biology, 23(12), 1094–1100. https://doi.org/10.1016/j.cub.2013.04.072




https://doi.org/10.21776/ub.industria.2019.008.01.8

Refbacks

  • There are currently no refbacks.